
Users’ manual for the Sollya tool
Release 7.0

Sylvain Chevillard
sylvain.chevillard@ens-lyon.org

Christoph Lauter
christoph.lauter@ens-lyon.org

Mioara Joldeş
joldes@laas.fr

sylvain.chevillard@ens-lyon.org
christoph.lauter@ens-lyon.org
joldes@laas.fr

License
The Sollya tool is Copyright c○ 2006-2018 by

Laboratoire de l’Informatique du Parallélisme,
UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668
Lyon, France,

LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2), Nancy, France,

Laboratoire d’Informatique de Paris 6, equipe PEQUAN,
UPMC Universite Paris 06 - CNRS - UMR 7606 - LIP6, Paris, France,

Laboratoire d’Informatique de Paris 6 - Équipe PEQUAN
Sorbonne Universités
UPMC Univ Paris 06
UMR 7606, LIP6
Boîte Courrier 169
4, place Jussieu
F-75252 Paris Cedex 05
France,

Sorbonne Université
CNRS, Laboratoire d’Informatique de Paris 6, LIP6
F - 75005 Paris
France,

CNRS, LIP6, UPMC
Sorbonne Universités, UPMC Univ Paris 06,
CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris,

University of Alaska Anchorage, College of Engineering

and by

Centre de recherche INRIA Sophia Antipolis Méditerranée,
Équipes APICS, FACTAS,
Sophia Antipolis, France.

All rights reserved.

This software is governed by the CeCILL-C license under French law and abiding by the rules of distri-
bution of free software. You can use, modify and/ or redistribute the software under the terms of the
CeCILL-C license as circulated by CEA, CNRS and INRIA at the following URL http://www.cecill.
info.
As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by
the license, users are provided only with a limited warranty and the software’s author, the holder of the
economic rights, and the successive licensors have only limited liability.
In this respect, the user’s attention is drawn to the risks associated with loading, using, modifying
and/or developing or reproducing the software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also therefore means that it is reserved
for developers and experienced professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software’s suitability as regards their requirements in conditions enabling
the security of their systems and/or data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had knowledge of the CeCILL-C license
and that you accept its terms.
This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

http://www.cecill.info
http://www.cecill.info

Contents
1 Compilation and installation of Sollya 1

1.1 Compilation dependencies . 1
1.2 Sollya command line options . 1

2 Introduction 3

3 General principles 5

4 Variables 7

5 Data types 8
5.1 Booleans . 9
5.2 Numbers . 9
5.3 Rational numbers and rational arithmetic . 13
5.4 Intervals and interval arithmetic . 14
5.5 Functions . 18
5.6 Strings . 19
5.7 Particular values . 19
5.8 Lists . 20
5.9 Structures . 21

6 Iterative language elements: assignments, conditional statements and loops 23
6.1 Blocks . 23
6.2 Assignments . 23
6.3 Conditional statements . 24
6.4 Loops . 25

7 Functional language elements: procedures and pattern matching 26
7.1 Procedures . 26
7.2 Pattern matching . 28

8 Commands and functions 39
8.1 abs . 39
8.2 absolute . 40
8.3 accurateinfnorm . 40
8.4 acos . 41
8.5 acosh . 42
8.6 && . 42
8.7 annotatefunction . 42
8.8 :. 44
8.9 ∼ . 45
8.10 asciiplot . 46
8.11 asin . 48
8.12 asinh . 49
8.13 atan . 49
8.14 atanh . 49
8.15 autodiff . 49
8.16 autosimplify . 51
8.17 bashevaluate . 52
8.18 bashexecute . 53
8.19 binary . 53
8.20 bind . 54
8.21 boolean . 55
8.22 canonical . 56
8.23 ceil . 57

i

8.24 chebyshevform . 57
8.25 checkinfnorm . 58
8.26 coeff . 60
8.27 composepolynomials . 60
8.28 @ . 61
8.29 constant . 63
8.30 cos . 63
8.31 cosh . 64
8.32 D . 64
8.33 DD . 64
8.34 DE . 64
8.35 decimal . 64
8.36 default . 64
8.37 degree . 65
8.38 denominator . 66
8.39 diam . 66
8.40 dieonerrormode . 67
8.41 diff . 68
8.42 dirtyfindzeros . 69
8.43 dirtyinfnorm . 70
8.44 dirtyintegral . 71
8.45 dirtysimplify . 72
8.46 display . 73
8.47 div . 74
8.48 / . 75
8.49 double . 77
8.50 doubledouble . 77
8.51 doubleextended . 78
8.52 dyadic . 79
8.53 == . 79
8.54 erf . 82
8.55 erfc . 83
8.56 error . 83
8.57 evaluate . 84
8.58 execute . 85
8.59 exp . 86
8.60 expand . 86
8.61 expm1 . 87
8.62 exponent . 87
8.63 externalplot . 88
8.64 externalproc . 89
8.65 false . 92
8.66 file . 92
8.67 findzeros . 93
8.68 fixed . 94
8.69 floating . 94
8.70 floor . 94
8.71 fpminimax . 95
8.72 fullparentheses . 99
8.73 function . 100
8.74 gcd . 103
8.75 >= . 104
8.76 getbacktrace . 105
8.77 getsuppressedmessages . 107
8.78 > . 108
8.79 guessdegree . 109

ii

8.80 halfprecision . 110
8.81 head . 111
8.82 hexadecimal . 111
8.83 honorcoeffprec . 112
8.84 hopitalrecursions . 112
8.85 horner . 113
8.86 HP . 114
8.87 implementconstant . 114
8.88 implementpoly . 119
8.89 in . 122
8.90 inf . 123
8.91 infnorm . 124
8.92 integer . 126
8.93 integral . 126
8.94 isbound . 127
8.95 isevaluable . 128
8.96 <= . 129
8.97 length . 130
8.98 library . 131
8.99 libraryconstant . 132
8.100 list of . 134
8.101 log . 134
8.102 log10 . 135
8.103 log1p . 135
8.104 log2 . 135
8.105 < . 135
8.106 mantissa . 136
8.107 max . 137
8.108 mid . 138
8.109 midpointmode . 138
8.110 min . 139
8.111 − . 140
8.112 mod . 142
8.113 * . 143
8.114 nearestint . 144
8.115 != . 144
8.116 nop . 145
8.117 ! . 146
8.118 numberroots . 147
8.119 numerator . 148
8.120 object . 149
8.121 objectname . 149
8.122 off . 151
8.123 on . 152
8.124 || . 152
8.125 parse . 153
8.126 perturb . 154
8.127 pi . 154
8.128 plot . 155
8.129 + . 157
8.130 points . 158
8.131 postscript . 158
8.132 postscriptfile . 159
8.133 ^ . 159
8.134 powers . 161
8.135 prec . 161

iii

8.136 precision . 161
8.137 .: . 162
8.138 print . 163
8.139 printdouble . 166
8.140 printexpansion . 166
8.141 printsingle . 167
8.142 printxml . 168
8.143 proc . 169
8.144 procedure . 174
8.145 QD . 175
8.146 quad . 175
8.147 quit . 176
8.148 range . 176
8.149 rationalapprox . 177
8.150 rationalmode . 178
8.151 RD . 178
8.152 readfile . 179
8.153 readxml . 180
8.154 relative . 180
8.155 remez . 181
8.156 rename . 183
8.157 restart . 184
8.158 return . 186
8.159 revert . 187
8.160 RN . 188
8.161 round . 188
8.162 roundcoefficients . 189
8.163 roundcorrectly . 191
8.164 roundingwarnings . 191
8.165 RU . 192
8.166 RZ . 192
8.167 searchgal . 193
8.168 SG . 194
8.169 showmessagenumbers . 194
8.170 simplify . 196
8.171 sin . 197
8.172 single . 197
8.173 sinh . 198
8.174 sort . 198
8.175 sqrt . 198
8.176 string . 199
8.177 subpoly . 199
8.178 substitute . 200
8.179 sup . 201
8.180 supnorm . 201
8.181 suppressmessage . 203
8.182 tail . 205
8.183 tan . 205
8.184 tanh . 206
8.185 taylor . 206
8.186 taylorform . 207
8.187 taylorrecursions . 210
8.188 TD . 211
8.189 time . 211
8.190 timing . 212
8.191 tripledouble . 213

iv

8.192 true . 213
8.193 unsuppressmessage . 214
8.194 var . 215
8.195 verbosity . 216
8.196 void . 217
8.197 worstcase . 219
8.198 write . 219
8.199 _x_ . 221

9 Appendix: interval arithmetic philosophy in Sollya 223
9.1 Univariate functions . 223
9.2 Bivariate functions . 223

10 Appendix: the Sollya library 224
10.1 Introduction . 224
10.2 Sollya object data-type . 224
10.3 Conventions in use in the library . 226
10.4 Displaying Sollya objects and numerical values . 226
10.5 Creating Sollya objects . 227

10.5.1 Numerical constants . 227
10.5.2 Functional expressions . 228
10.5.3 Other simple objects . 228
10.5.4 Lists . 230
10.5.5 Structures . 231
10.5.6 Library functions, library constants and procedure functions 232
10.5.7 External procedures . 233

10.6 Getting the type of an object . 235
10.7 Recovering the value of a range . 235
10.8 Recovering the value of a numerical constant or a constant expression 237
10.9 Converting a string from Sollya to C . 239
10.10 Recovering the contents of a Sollya list . 239
10.11 Recovering the contents of a Sollya structure . 239
10.12 Decomposing a functional expression . 240
10.13 Faithfully evaluate a functional expression . 245
10.14 Comparing objects structurally and computing hashes on Sollya objects 246
10.15 Executing Sollya procedures . 248
10.16 Name of the free variable . 248
10.17 Commands and functions . 248
10.18 Warning messages in library mode . 249

10.18.1 Catching warning messages . 249
10.18.2 Emitting warning messages . 252

10.19 Using Sollya in a program that has its own allocation functions 252

v

1 Compilation and installation of Sollya

Sollya comes in two flavors:

∙ Either as an interactive tool. This is achieved by running the Sollya executable file.

∙ Or as a C library that provides all the features of the tool within the C programming language.

The installation of the tool and the library follow the same steps, described below. The present
documentation focuses more on the interactive tool. As a matter of fact, the library works exactly the
same way as the tool, so it is necessary to know a little about the tool in order to correctly use the
library. The reader who is only interested in the library should at least read the following Sections 2, 3
and 5. A documentation specifically describing the library usage is available in Appendix 10 at the end
of the present documentation.

1.1 Compilation dependencies
The Sollya distribution can be compiled and installed using the usual ./configure, make, make
install procedure. Besides a C and a C++ compiler, Sollya needs the following software libraries
and tools to be installed:

∙ GMP

∙ MPFR

∙ MPFI

∙ fplll

∙ libxml2

∙ gnuplot (external tool).

The ./configure script checks for the installation of the libraries. However Sollya will build without
error if gnuplot is not installed. In this case an error will be displayed at runtime.

The use of the external tool rlwrap is highly recommended but not required to use the Sollya
interactive tool. Use the -A option of rlwrap for correctly displayed ANSI X3.64/ ISO/IEC 6429 colored
prompts (see below).

1.2 Sollya command line options
Sollya can read input on standard input or in a file whose name is given as an argument when Sollya
is invoked. The tool will always produce its output on standard output, unless specifically instructed by
a particular Sollya command that writes to a file. The following lines are valid invocations of Sollya,
assuming that bash is used as a shell:

~/% sollya
...
~/% sollya myfile.sollya
...
~/% sollya < myfile.sollya

If a file given as an input does not exist, an error message is displayed.
All configurations of the internal state of the tool are done by commands given on the Sollya prompt

or in Sollya scripts. Nevertheless, some command line options are supported; they work at a very basic
I/O-level and can therefore not be implemented as commands.

The following options are supported when calling Sollya:

1

∙ --args: This special argument indicates to Sollya that subsequent command line arguments are
no longer to be interpreted but are to be passed as-is to the predefined Sollya variable __argv.
The --args argument is implicitly assumed if a Sollya script filename has already been specified
with a preceding command line argument and none of the subsequent command line arguments is
one of the special options given in this list.

∙ --donotmodifystacksize: When invoked, Sollya tries to increase the stack size that is available
to a user process to the maximum size supported by the kernel. On some systems, the correspondent
ioctl does not work properly. Use the option to prevent Sollya from changing the stack size.

∙ --flush: When this option is given, Sollya will flush all its input and output buffers after parsing
and executing each command resp. sequence of commands. This option is needed when pipes are
used to communicate with Sollya from another program.

∙ --help: Prints help on the usage of the tool and quits.

∙ --nocolor: Sollya supports coloring of the output using ANSI X3.64/ ISO/IEC 6429 escape
sequences. Coloring is deactivated when Sollya is connected on standard input to a file that is
not a terminal. This option forces the deactivation of ANSI coloring. This might be necessary on
very old gray-scale terminals or when encountering problems with old versions of rlwrap.

∙ --noprompt: Sollya prints a prompt symbol when connected on standard input to a pseudo-file
that is a terminal. The option deactivates the prompt.

∙ --oldautoprint: The behavior of an undocumented feature for displaying values has changed
in Sollya from version 1.1 to version 2.0. The old feature is deprecated. If you wish to use it
nevertheless, use this deprecated option.

∙ --oldexternalprocprint: The behavior of an undocumented feature for displaying Sollya objects
representing external procedures upon automatic printing at the Sollya prompt has been changed
in Sollya from version 4.1 to version 5.0. The old feature is deprecated. If you wish to use it
nevertheless, use this deprecated option.

∙ --oldrlwrapcompatible: This option is deprecated. It makes Sollya emit a non ANSI X3.64
compliant coloring escape sequence for making it compatible with versions of rlwrap that do not
support the -A option. The option is considered a hack since it is known to garble the output of
the tool under some particular circumstances.

∙ --warninfile[append] <file>: Normally, Sollya emits warning and information messages to-
gether with all other displayed information on either standard output or standard error. This
option allows all warning and information messages to get redirected to a file. The filename to be
used must be given after the option. When --warninfile is used, the existing content (if any) of
the file is first removed before writing to the file. With --warninfileappend, the messages are
appended to an existing file. Even if coloring is used for the displaying all other Sollya output,
no coloring sequences are ever written to the file. Let us emphasize on the fact that any file of
a unixoid system can be used for output, for instance also a named pipe. This allows for error
messaging to be performed on a separate terminal. The use of this option is mutually exclusive
with the --warnonstderr option.

∙ --warnonstderr: Normally, Sollya prints warning and information messages on standard output,
using a warning color when coloring is activated. When this option is given, Sollya will output
all warning and information messages on standard error. Coloring will be used even on standard
error, when activated. The use of this option is mutually exclusive with the --warninfile[append]
option.

The Sollya interactive tool process returns the following exit status values, depending on the various
reasons the tool exits:

∙ The exit status 0 is returned when Sollya is quit using the quit command. This is the standard
way of terminating the Sollya process. The same exit status is returned for cases when Sollya is
run with one of the --help or --version options (see above).

2

∙ The exit status 1 is returned when the Sollya is terminated due to an internal error. This case
should never happen. This exit status 1 is also returned when two or more command line options
(as documented above) are inconsistent, syntactically incorrect or provoke some other low-level
error (such as a file in input not being readable).

∙ The exit status 2 is returned when the Sollya tool is terminated upon a Sollya language level
error and dieonerrormode is set to on (see the documentation of that keyword for details).

∙ The exit status 3 is returned when the last Sollya command gets parsed and executed correctly
but input reaches an end-of-file condition without the quit command being executed beforehand.

∙ The exit status 4 is returned when Sollya reaches an end-of-file condition upon incomplete input,
i.e. when it started parsing a new Sollya command (or expression), which is incomplete. Remark
that the empty input (end-of-file immediately upon Sollya process launch) is an incomplete input
for reasons to be found in the Sollya grammar.

2 Introduction
Sollya is an interactive tool for handling numerical functions and working with arbitrary precision.
It can evaluate functions accurately, compute polynomial approximations of functions, automatically
implement polynomials for use in math libraries, plot functions, compute infinity norms, etc. Sollya is
also a full-featured script programming language with support for procedures etc.

Let us begin this manual with an example. Sollya does not allow command line edition; since this
may quickly become uncomfortable, we highly suggest to use the rlwrap tool with Sollya:

~/% rlwrap -A sollya
>

Sollya manipulates only functions in one variable. The first time that an unbound variable is used,
this name is fixed. It will be used to refer to the free variable. For instance, try

> f = sin(x)/x;
> g = cos(y)-1;
Warning: the identifier "y" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "y" as "x".
> g;
cos(x) - 1

Now, the name 𝑥 can only be used to refer to the free variable:

> x = 3;
Warning: the identifier "x" is already bound to the free variable, to a library
function, library constant or to an external procedure.
The command will have no effect.
Warning: the last assignment will have no effect.

If you really want to unbind 𝑥, you can use the rename command and change the name of the free
variable:

> rename(x,y);
Information: the free variable has been renamed from "x" to "y".
> g;
cos(y) - 1
> x=3;
> x;
3

3

Sollya has a reserved keyword that can always be used to refer to the free variable. This keyword is
x. This is particularly useful in contexts when the name of the variable is not known: typically when
referring to the free variable in a pattern matching or inside a procedure.

> f == sin(_x_)/_x_;
true

As you have seen, you can name functions and easily work with them. The basic thing to do with a
function is to evaluate it at some point:

> f(-2);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
0.45464871341284084769800993295587242135112748572394
> evaluate(f,-2);
0.45464871341284084769800993295587242135112748572394

The printed value is generally a faithful rounding of the exact value at the working precision (i.e., one
of the two floating-point numbers enclosing the exact value). Internally Sollya represents numbers as
floating-point numbers in arbitrary precision with radix 2: the fact that a faithful rounding is performed
in binary does not imply much on the exactness of the digits displayed in decimal. The working precision
is controlled by the global variable prec:

> prec;
165
> prec=200;
The precision has been set to 200 bits.
> prec;
200
> f(-2);
Warning: rounding has happened. The value displayed is a faithful rounding to 20
0 bits of the true result.
0.4546487134128408476980099329558724213511274857239451341894865

Sometimes a faithful rounding cannot easily be computed. In such a case, a value is printed that was
obtained using floating-point approximations without control on the final accuracy:

> log2(5)/log2(17) - log(5)/log(17);
Warning: rounding may have happened.
If there is rounding, the displayed value is *NOT* guaranteed to be a faithful r
ounding of the true result.
0

The philosophy of Sollya is: Whenever something is not exact, print a warning. This explains the
warnings in the previous examples. If the result can be shown to be exact, there is no warning:

> sin(0);
0

Let us finish this Section with a small complete example that shows a bit of what can be done
with Sollya:

4

> restart;
The tool has been restarted.
> prec=50;
The precision has been set to 50 bits.
> f=cos(2*exp(x));
> d=[-1/8;1/8];
> p=remez(f,2,d);
> derivativeZeros = dirtyfindzeros(diff(p-f),d);
> derivativeZeros = inf(d).:derivativeZeros:.sup(d);
> maximum=0;
> for t in derivativeZeros do {

r = evaluate(abs(p-f), t);
if r > maximum then { maximum=r; argmaximum=t; };

};
> print("The infinity norm of", p-f, "is", maximum, "and is reached at", argmaxi
mum);
The infinity norm of -3.89710727796949e-2 * x^2 + -1.79806720921853 * x + (-0.41
62655728752966) - cos(2 * exp(x)) is 8.6306594443227e-4 and is reached at 6.6635
5088071379e-2

In this example, we define a function 𝑓 , an interval 𝑑 and we compute the best degree-2 polynomial
approximation of 𝑓 on 𝑑 with respect to the infinity norm. In other words, max𝑥∈𝑑{|𝑝(𝑥) − 𝑓(𝑥)|} is
minimal among polynomials with degree not greater than 2. Then, we compute the list of the zeros of
the derivative of 𝑝 − 𝑓 and add the bounds of 𝑑 to this list. Finally, we evaluate |𝑝 − 𝑓 | for each point
in the list and store the maximum and the point where it is reached. We conclude by printing the result
in a formatted way.

Let us mention as a side-note that you do not really need to use such a script for computing an
infinity norm; as we will see, the command dirtyinfnorm does this for you.

3 General principles
The first purpose of Sollya is to help people using numerical functions and numerical algorithms in a
safe way. It is first designed to be used interactively but it can also be used in scripts1.

One of the particularities of Sollya is to work with multi-precision arithmetic (it uses the MPFR
library). For safety purposes, Sollya knows how to use interval arithmetic. It uses interval arithmetic
to produce tight and safe results with the precision required by the user.

The general philosophy of Sollya is: When you can perform a computation exactly and sufficiently
quickly, do it; when you cannot, do not, unless you have been explicitly asked for.

The precision of the tool is set by the global variable prec. In general, the variable prec determines
the precision of the outputs of commands: more precisely, the command will internally determine how
much precision should be used during the computations in order to ensure that the output is a faithfully
rounded result with prec bits.

For decidability and efficiency reasons, this general principle cannot be applied every time, so be
careful. Moreover certain commands are known to be unsafe: they give in general excellent results
and give almost prec correct bits in output for everyday examples. However they are merely based on
heuristics and should not be used when the result must be safe. See the documentation of each command
to know precisely how confident you can be with their result.

A second principle (that comes together with the first one) is the following one: When a compu-
tation leads to inexact results, inform the user with a warning. This can be quite irritating in some
circumstances: in particular if you are using Sollya within other scripts. The global variable verbosity
lets you change the level of verbosity of Sollya. When the variable is set to 0, Sollya becomes com-
pletely silent on standard output and prints only very important messages on standard error. Increase
verbosity if you want more information about what Sollya is doing. Please keep in mind that when

1Remark: some of the behaviors of Sollya slightly change when it is used in scripts. For example, no prompt is printed.

5

you affect a value to a global variable, a message is always printed even if verbosity is set to 0. In order
to silently affect a global variable, use !:

> prec=30;
The precision has been set to 30 bits.
> prec=30!;
>

For conviviality reasons, values are displayed in decimal by default. This lets a normal human being
understand the numbers they manipulate. But since constants are internally represented in binary, this
causes permanent conversions that are sources of roundings. Thus you are loosing in accuracy and Sollya
is always complaining about inexact results. If you just want to store or communicate your results (to
another tools for instance) you can use bit-exact representations available in Sollya. The global variable
display defines the way constants are displayed. Here is an example of the five available modes:

> prec=30!;
> a = 17.25;
> display=decimal;
Display mode is decimal numbers.
> a;
17.25
> display=binary;
Display mode is binary numbers.
> a;
1.000101_2 * 2^(4)
> display=powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> a;
69 * 2^(-2)
> display=dyadic;
Display mode is dyadic numbers.
> a;
69b-2
> display=hexadecimal;
Display mode is hexadecimal numbers.
> a;
0x1.14p4

Please keep in mind that it is possible to maintain the general verbosity level at some higher setting
while deactivating all warnings on roundings. This feature is controlled using the roundingwarnings
global variable. It may be set to on or off. By default, the warnings are activated (roundingwarnings
= on) when Sollya is connected on standard input to a pseudo-file that represents a terminal. They are
deactivated when Sollya is connected on standard input to a real file. See 8.164 for further details; the
behavior is illustrated with examples there.

As always, the symbol e means ×10�. The same way the symbol b means ×2�. The symbol p
means ×16� and is used only with the 0x prefix. The prefix 0x indicates that the digits of the following
number until a symbol p or white-space are hexadecimal. The suffix _2 indicates to Sollya that the
previous number has been written in binary. Sollya can parse these notations even if you are not in the
corresponding display mode, so you can always use them.

You can also use memory-dump hexadecimal notation frequently used to represent IEEE 754 double
and single precision numbers. Since this notation does not allow for exactly representing numbers with
arbitrary precision, there is no corresponding display mode. However, the commands printdouble
respectively printsingle round the value to the nearest double respectively single. The number is
then printed in hexadecimal as the integer number corresponding to the memory representation of the
IEEE 754 double or single number:

6

> printdouble(a);
0x4031400000000000
> printsingle(a);
0x418a0000

Sollya can parse these memory-dump hexadecimal notation back in any display mode. The differ-
ence of this memory-dump notation with the hexadecimal notation (as defined above) is made by the
presence or absence of a p indicator.

4 Variables
As already explained, Sollya can manipulate variate functional expressions in one variable. These
expressions contain a unique free variable the name of which is fixed by its first usage in an expression
that is not a left-hand-side of an assignment. This global and unique free variable is a variable in the
mathematical sense of the term.

Sollya also provides variables in the sense programming languages give to the term. These variables,
which must be different in their name from the global free variable, may be global or declared and attached
to a block of statements, i.e., a begin-end-block. These programming language variables may hold any
object of the Sollya language, as for example functional expressions, strings, intervals, constant values,
procedures, external functions and procedures, etc.

Global variables need not to be declared. They start existing, i.e., can be correctly used in expressions
that are not left-hand-sides of assignments, when they are assigned a value in an assignment. Since they
are global, this kind of variables is recommended only for small Sollya scripts. Larger scripts with code
reuse should use declared variables in order to avoid name clashes for example in loop variables.

Declared variables are attached to a begin-end-block. The block structure builds scopes for declared
variables. Declared variables in inner scopes shadow (global and declared) variables of outer scopes. The
global free variable, i.e., the mathematical variable for variate functional expressions in one variable,
cannot be shadowed. Variables are declared using the var keyword. See Section 8.194 for details on its
usage and semantic.

The following code examples illustrate the use of variables.

7

> f = exp(x);
> f;
exp(x)
> a = "Hello world";
> a;
Hello world
> b = 5;
> f(b);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
148.41315910257660342111558004055227962348766759388
> {var b; b = 4; f(b); };
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
54.598150033144239078110261202860878402790737038614
> {var x; x = 3; };
Warning: the identifier "x" is already bound to the current free variable.
It cannot be declared as a local variable. The declaration of "x" will have no e
ffect.
Warning: the identifier "x" is already bound to the free variable, to a library
function, library constant or to an external procedure.
The command will have no effect.
Warning: the last assignment will have no effect.
> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1
true
5
3
> a;
Hello world

Let us state that a variable identifier, just as every identifier in Sollya, contains at least one character,
starts with a ASCII letter and continues with ASCII letters or numerical digits.

Two predefined variables exist when Sollya is started:

∙ __argv : This variable contains, on Sollya startup and after the execution of the restart com-
mand, a list of character strings that correspond to the command line options given to Sollya
after the (implicit) command line argument --args (see above).

∙ __unique_id : This variable contains, on Sollya startup and after the execution of the restart
command, a character string that uniquely identifies the given Sollya session on a system. It hence
allows for concurrent execution of Sollya scripts that use temporary files for communication with
other tools. The character string is made of alphanumeric characters ([0-9a-zA-Z]) and dashes (-)
and underscores (_). In particular, it does not contain any space. After the execution of the
restart command, the __unique_id variable is refreshed with a new, unique value.

Even though these variables exist upon Sollya startup with predefined values, they behave like any
other variable: the predefined value can be overwritten by assigning any new value to the variables, the
variables can be shadowed by declared, local variables of the same name and so on.

5 Data types
Sollya has a (very) basic system of types. If you try to perform an illicit operation (such as adding a
number and a string, for instance), you will get a typing error. Let us see the available data types.

8

5.1 Booleans
There are two special values true and false. Boolean expressions can be constructed using the boolean
connectors && (and), || (or), ! (not), and comparisons.

The comparison operators <, <=, > and >= can only be used between two numbers or constant
expressions.

The comparison operators == and != are polymorphic. You can use them to compare any two
objects, like two strings, two intervals, etc. As a matter of fact, polymorphism is allowed on both sides:
it is possible to compare objects of different type. Such objects of different type, as they can never be
syntactically equal, will always compare unequal (see exception for error, Section 8.56) and never equal.
It is important to remember that testing the equality between two functions will return true if and only
if the expression trees representing the two functions are exactly the same or automatic simplification is
activated and both functions are polynomials that are equal. See 8.56 for an exception concerning the
special object error. Example:

> 1+x==1+x;
true

5.2 Numbers
Sollya represents numbers as binary multi-precision floating-point values. For integer values and values
in dyadic, binary, hexadecimal or memory dump notation, it automatically uses a precision needed
for representing the value exactly (unless this behavior is overridden using the syntax given below).
Additionally, automatic precision adaption takes place for all integer values (even in decimal notation)
written without the exponent sign e or with the exponent sign e and an exponent sufficiently small that
they are less than 10999. Otherwise the values are represented with the current precision prec. When a
number must be rounded, it is rounded to the precision prec before the expression get evaluated:

> prec=12!;
> 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
4098
> 4098.1;
Warning: Rounding occurred when converting the constant "4098.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
4098
> 4097.1+1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
4099

As a matter of fact, each variable has its own precision that corresponds to its intrinsic precision or,
if it cannot be represented, to the value of prec when the variable was set. Thus you can work with
variables having a precision higher than the current precision.

The same way, if you define a function that refers to some constant, this constant is stored in the
function with the current precision and will keep this value in the future, even if prec becomes smaller.

If you define a function that refers to some variable, the precision of the variable is kept, independently
of the current precision:

9

> prec = 50!;
> a = 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 50 bits.
If safe computation is needed, try to increase the precision.
> prec = 12!;
> f = x + a;
> g = x + 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
> prec = 120;
The precision has been set to 120 bits.
> f;
4097.099999999998544808477163314819336 + x
> g;
4098 + x

In some rare cases, it is necessary to read in decimal constants with a particular precision being used
in the conversion to the binary floating-point format, which Sollya uses. Setting prec to that precision
may prove to be an insufficient means for doing so, for example when several different precisions have to be
used in one expression. For these rare cases, Sollya provides the following syntax: decimal constants may
be written %precision%constant, where precision is a constant integer, written in decimal, and constant
is the decimal constant. Sollya will convert the constant constant with precision precision, regardless
of the global variable prec and regardless if constant is an integer or would otherwise be representable.

10

> prec = 24;
The precision has been set to 24 bits.
> a = 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 24 bits.
If safe computation is needed, try to increase the precision.
> b = 33554433;
> prec = 64;
The precision has been set to 64 bits.
> display = binary;
Display mode is binary numbers.
> a;
1.10011001100110011001101_2 * 2^(-4)
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 64 bits.
If safe computation is needed, try to increase the precision.
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> %24%0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 24 bits.
If safe computation is needed, try to increase the precision.
1.10011001100110011001101_2 * 2^(-4)
> c = 33554433;
> b;
1.0000000000000000000000001_2 * 2^(25)
> c;
1.0000000000000000000000001_2 * 2^(25)
> %24%33554433;
Warning: Rounding occurred when converting the constant "33554433" to floating-p
oint with 24 bits.
If safe computation is needed, try to increase the precision.
1_2 * 2^(25)
>
>

Sollya is an environment that uses floating-point arithmetic. The IEEE 754-2008 standard on
floating-point arithmetic does not only define floating-point numbers that represent real numbers but
also floating-point data representing infinities and Not-a-Numbers (NaNs). Sollya also supports infinities
and NaNs in the spirit of the IEEE 754-2008 standard without taking the standard’s choices literally.

∙ Signed infinities are available through the Sollya objects infty, -infty, @Inf@ and -@Inf@.

∙ Not-a-Numbers are supported through the Sollya objects NaN and @NaN@. Sollya does not have
support for NaN payloads, signaling or quiet NaNs or signs of NaNs. Signaling NaNs are sup-
ported on input for single and double precision memory notation (see Section 3). However, they
immediately get converted to plain Sollya NaNs.

The evaluation of an expression involving a NaN or the evaluation of a function at a point being NaN
always results in a NaN.

Infinities are considered to be the limits of expressions tending to infinity. They are supported as
bounds of intervals in some cases. However, particular commands might prohibit their use even though
there might be a mathematical meaning attached to such expressions. For example, while Sollya will
evaluate expressions such as lim

𝑥→−∞
𝑒𝑥, expressed e.g., through evaluate(exp(x),[-infty;0]), it will

11

not accept to compute the (finite) value of

0∫︁
−∞

𝑒𝑥 d𝑥.

The following examples give an idea of what can be done with Sollya infinities and NaNs. Here is
what can be done with infinities:

> f = exp(x) + 5;
> f(-infty);
5
> evaluate(f,[-infty;infty]);
[5;infty]
> f(infty);
infty
> [-infty;5] * [3;4];
[-infty;20]
> -infty < 5;
true
> log(0);
-infty
> [log(0);17];
Warning: inclusion property is satisfied but the diameter may be greater than th
e least possible.
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 165 bit accurate.
[-infty;17]
>

And the following example illustrates NaN behavior.

12

> 3/0;
Warning: the given expression is undefined or numerically unstable.
NaN
> (-3)/0;
Warning: the given expression is undefined or numerically unstable.
NaN
> infty/infty;
Warning: the given expression is undefined or numerically unstable.
NaN
> infty + infty;
infty
> infty - infty;
Warning: the given expression is undefined or numerically unstable.
NaN
> f = exp(x) + 5;
> f(NaN);
NaN
> NaN == 5;
false
> NaN == NaN;
false
> NaN != NaN;
true
> X = "Vive la Republique!";
> !(X == X);
false
> X = 5;
> !(X == X);
false
> X = NaN;
> !(X == X);
true
>

5.3 Rational numbers and rational arithmetic
The Sollya tool is mainly based on floating-point arithmetic: wherever possible, floating-point algo-
rithms, including algorithms using interval arithmetic, are used to produce approximate but safe results.
For some particular cases, floating-point arithmetic is not sufficient: some algorithms just require natural
and rational numbers to be handled exactly. More importantly, for these applications, it is required that
rational numbers be displayed as such.

Sollya implements a particular mode that offers a lightweight support for rational arithmetic. When
needed, it can be enabled by assigning on to the global variable rationalmode. It is disabled by assigning
off; the default is off.

When the mode for rational arithmetic is enabled, Sollya’s behavior will change as follows:

∙ When a constant expression is given at the Sollya prompt, Sollya will first try to simplify the
expression to a rational number. If such an evaluation to a rational number is possible, Sollya
will display that number as an integer or a fraction of two integers. Only if Sollya is not able
to simplify the constant expression to a rational number, it will launch the default behavior of
evaluating constant expressions to floating-point numbers that are generally faithful roundings of
the expressions.

∙ When the global mode autosimplify is on, which is the default, Sollya will additionally use
rational arithmetic while trying to simplify expressions given in argument of commands.

13

Even when rationalmode is on, Sollya will not be able to exhibit integer ratios between transcen-
dental quantities. For example, Sollya will not display 1

6 for arcsin
(︀ 1

2
)︀

/𝜋 but 0.16666 Sollya’s
evaluator for rational arithmetic is only able to simplify rational expressions based on addition, subtrac-
tion, multiplication, division, negation, perfect squares (for square root) and integer powers.

The following example illustrates what can and what cannot be done with Sollya’s mode for rational
arithmetic:

> 1/3 - 1/7;
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
0.19047619047619047619047619047619047619047619047619
> rationalmode = on;
Rational mode has been activated.
> 1/3 - 1/7;
4 / 21
> (2 + 1/7)^2 + (6/7)^2 + 2 * (2 + 1/7) * 6/7;
9
> rationalmode = off;
Rational mode has been deactivated.
> (2 + 1/7)^2 + (6/7)^2 + 2 * (2 + 1/7) * 6/7;
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
9
> rationalmode = on;
Rational mode has been activated.
> asin(1)/pi;
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
0.5
> sin(1/6 * pi);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
0.5
> exp(1/7 - 3/21) / 7;
1 / 7
> rationalmode = off;
Rational mode has been deactivated.
> exp(1/7 - 3/21) / 7;
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
0.142857142857142857142857142857142857142857142857145
> print(1/7 - 3/21);
1 / 7 - 3 / 21
> rationalmode = on;
Rational mode has been activated.
> print(1/7 - 3/21);
0

5.4 Intervals and interval arithmetic
Sollya can manipulate intervals that are closed subsets of the real numbers. Several ways of defining
intervals exist in Sollya. There is the most common way where intervals are composed of two numbers
or constant expressions representing the lower and the upper bound. These values are separated either
by commas or semi-colons. Interval bound evaluation is performed in a way that ensures the inclusion
property: all points in the original, unevaluated interval will be contained in the interval with its bounds
evaluated to floating-point numbers.

14

> d=[1;2];
> d2=[1,1+1];
> d==d2;
true
> prec=12!;
> 8095.1;
Warning: Rounding occurred when converting the constant "8095.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
8096
> [8095.1; 8096.1];
Warning: Rounding occurred when converting the constant "8095.1" to floating-poi
nt with 12 bits.
The inclusion property is nevertheless satisfied.
Warning: Rounding occurred when converting the constant "8096.1" to floating-poi
nt with 12 bits.
The inclusion property is nevertheless satisfied.
[8094;8098]

Sollya has a mode for printing intervals that are that thin that their bounds have a number of decimal
digits in common when printed. That mode is called midpointmode; see below for an introduction and
Section 8.109 for details. As Sollya must be able to parse back its own output, a syntax is provided
to input intervals in midpoint mode. However, please pay attention to the fact that the notation used
in midpoint mode generally increases the width of intervals: hence when an interval is displayed in
midpoint mode and read again, the resulting interval may be wider than the original interval.

> midpointmode = on!;
> [1.725e4;1.75e4];
0.17~2/5~e5
> 0.17~2/5~e5;
0.17~2/5~e5
> midpointmode = off!;
> 0.17~2/5~e5;
[17200;17500]

In some cases, intervals become infinitely thin in theory, in which case one tends to think of point
intervals even if their floating-point representation is not infinitely thin. Sollya provides a very conve-
nient way for input of such point intervals. Instead of writing [a;a], it is possible to just write [a].
Sollya will expand the notation while making sure that the inclusion property is satisfied:

> [3];
[3;3]
> [1/7];
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 24 bit accurate.
[0.14285713;0.14285715]
> [exp(8)];
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 24 bit accurate.
[2980.9578;2980.958]

15

When the mode midpointmode is set to on (see 8.109), Sollya will display intervals that are provably
reduced to one point in this extended interval syntax. It will use midpointmode syntax for intervals that
are sufficiently thin but not reduced to one point (see Section 8.109 for details):

> midpointmode = off;
Midpoint mode has been deactivated.
> [17;17];
[17;17]
> [exp(pi);exp(pi)];
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 165 bit accurate.
[23.1406926327792690057290863679485473802661062426;23.14069263277926900572908636
7948547380266106242601]
> midpointmode = on;
Midpoint mode has been activated.
> [17;17];
[17]
> [exp(pi);exp(pi)];
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 165 bit accurate.
0.231406926327792690057290863679485473802661062426~0/1~e2
>

Sollya intervals are internally represented with floating-point numbers as bounds; rational numbers
are not supported here. If bounds are defined by constant expressions, these are evaluated to floating-
point numbers using the current precision. Numbers or variables containing numbers keep their precision
for the interval bounds.

Constant expressions get evaluated to floating-point values immediately; this includes 𝜋 and rational
numbers, even when rationalmode is on (see Section 5.3 for this mode).

> prec = 300!;
> a = 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 300 bits.
If safe computation is needed, try to increase the precision.
> prec = 12!;
> d = [4097.1; a];
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
The inclusion property is nevertheless satisfied.
> prec = 300!;
> d;
[4096;4097.1]
> prec = 30!;
> [-pi;pi];
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 30 bit accurate.
[-3.141592655;3.141592655]

You can get the upper-bound (respectively the lower-bound) of an interval with the command sup
(respectively inf). The middle of the interval can be computed with the command mid. Let us also

16

mention that these commands can also be used on numbers (in that case, the number is interpreted as
an interval containing only one single point. In that case the commands inf, mid and sup are just the
identity):

> d=[1;3];
> inf(d);
1
> mid(d);
2
> sup(4);
4

Let us mention that the mid operator never provokes a rounding. It is rewritten as an unevaluated
expression in terms of inf and sup.

Sollya permits intervals to also have non-real bounds, such as infinities or NaNs. When evaluating
certain expressions, in particular given as interval bounds, Sollya will itself generate intervals containing
infinities or NaNs. When evaluation yields an interval with a NaN bound, the given expression is most
likely undefined or numerically unstable. Such results should not be trusted; a warning is displayed.

While computations on intervals with bounds being NaN will always fail, Sollya will try to interpret
infinities in the common way as limits. However, this is not guaranteed to work, even if it is guaranteed
that no unsafe results will be produced. See also section 5.2 for more detail on infinities in Sollya. The
behavior of interval arithmetic on intervals containing infinities or NaNs is subject to debate; moreover,
there is no complete consensus on what should be the result of the evaluation of a function 𝑓 over an
interval 𝐼 containing points where 𝑓 is not defined. Sollya has its own philosophy regarding these
questions. This philosophy is explained in Appendix 9 at the end of this document.

> evaluate(exp(x),[-infty;0]);
[0;1]
> dirtyinfnorm(exp(x),[-infty;0]);
Warning: a bound of the interval is infinite or NaN.
This command cannot handle such intervals.
NaN
>
> f = log(x);
> [f(0); f(1)];
Warning: inclusion property is satisfied but the diameter may be greater than th
e least possible.
Warning: at least one of the given expressions is not a constant but requires ev
aluation.
Evaluation is guaranteed to ensure the inclusion property. The approximate resul
t is at least 165 bit accurate.
[-infty;0]
>

Sollya internally uses interval arithmetic extensively to provide safe answers. In order to provide
for algorithms written in the Sollya language being able to use interval arithmetic, Sollya offers native
support of interval arithmetic. Intervals can be added, subtracted, multiplied, divided, raised to powers,
for short, given in argument to any Sollya function. The tool will apply the rules of interval arithmetic
in order to compute output intervals that safely encompass the hull of the image of the function on the
given interval:

17

> [1;2] + [3;4];
[4;6]
> [1;2] * [3;4];
[3;8]
> sqrt([9;25]);
[3;5]
> exp(sin([10;100]));
[0.36787942;2.718282]

When such expressions involving intervals are given, Sollya will follow the rules of interval arithmetic
in precision prec for immediately evaluating them to interval enclosures. While Sollya’s evaluator always
guarantees the inclusion property, it also applies some optimizations in some cases in order to make the
image interval as thin as possible. For example, Sollya will use a Taylor expansion based evaluation if
a composed function, call it 𝑓 , is applied to an interval. In other words, in this case Sollya will behave
as if the evaluate command (see Section 8.57) were implicitly used. In most cases, the result will be
different from the one obtained by replacing all occurrences of the free variable of a function by the
interval the function is to be evaluated on:

> f = x - sin(x);
> [-1b-10;1b-10] - sin([-1b-10;1b-10]);
[-1.95312484477957829894e-3;1.95312484477957829894e-3]
> f([-1b-10;1b-10]);
[-1.552204217011176269e-10;1.552204217011176269e-10]
> evaluate(f,[-1b-10;1b-10]);
[-1.552204217011176269e-10;1.552204217011176269e-10]

5.5 Functions
Sollya knows only about functions with one single variable. The first time in a session that an unbound
name is used (without being assigned) it determines the name used to refer to the free variable.

The basic functions available in Sollya are the following:

∙ +, -, *, /, ˆ

∙ sqrt

∙ abs

∙ sin, cos, tan, sinh, cosh, tanh

∙ asin, acos, atan, asinh, acosh, atanh

∙ exp, expm1 (defined as expm1(𝑥) = exp(𝑥) − 1)

∙ log (natural logarithm), log2 (binary logarithm), log10 (decimal logarithm), log1p (defined as
log1p(𝑥) = log(1 + 𝑥))

∙ erf, erfc

∙ halfprecision, single, double, doubleextended, doubledouble, quad, tripledouble (see sec-
tions 8.80, 8.172, 8.49, 8.51, 8.50, 8.146 and 8.191)

∙ HP, SG, D, DE, DD, QD, TD (see sections 8.80, 8.172, 8.49, 8.51, 8.50, 8.146 and 8.191)

∙ floor, ceil, nearestint.

The constant 𝜋 is available through the keyword pi as a 0-ary function:

18

> display=binary!;
> prec=12!;
> a=pi;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding to 12
bits of the true result.

1.10010010001_2 * 2^(1)
> prec=30!;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding to 30
bits of the true result.

1.10010010000111111011010101001_2 * 2^(1)

The reader may wish to see Sections 8.98 and 8.73 for ways of dynamically adding other base functions
to Sollya.

5.6 Strings
Anything written between quotes is interpreted as a string. The infix operator @ concatenates two strings.
To get the length of a string, use the length function. You can access the 𝑖-th character of a string using
brackets (see the example below). There is no character type in Sollya: the 𝑖-th character of a string is
returned as a string itself.

> s1 = "Hello "; s2 = "World!";
> s = s1@s2;
> length(s);
12
> s[0];
H
> s[11];
!

Strings may contain the following escape sequences: ∖∖, ∖¨, ∖?, ∖´, ∖n, ∖t, ∖a, ∖b, ∖f, ∖r, ∖v,
∖x[hexadecimal number] and ∖[octal number]. Refer to the C99 standard for their meaning.

5.7 Particular values
Sollya knows about some particular values. These values do not really have a type. They can be stored
in variables and in lists. A (possibly not exhaustive) list of such values is the following one:

∙ on, off (see sections 8.123 and 8.122)

∙ dyadic, powers, binary, decimal, hexadecimal (see sections 8.52, 8.134, 8.19, 8.35 and 8.82)

∙ file, postscript, postscriptfile (see sections 8.66, 8.131 and 8.132)

∙ RU, RD, RN, RZ (see sections 8.165, 8.151, 8.160 and 8.166)

∙ absolute, relative (see sections 8.2 and 8.154)

∙ floating, fixed (see sections 8.69 and 8.68)

∙ halfprecision, single, double, doubleextended, doubledouble, quad, tripledouble (see sec-
tions 8.80, 8.172, 8.49, 8.51, 8.50, 8.146 and 8.191)

∙ HP, SG, D, DE, DD, QD, TD (see sections 8.80, 8.172, 8.49, 8.51, 8.50, 8.146 and 8.191)

∙ perturb (see Section 8.126)

19

∙ honorcoeffprec (see Section 8.83)

∙ default (see Section 8.36)

∙ error (see Section 8.56)

∙ void (see Section 8.196)

5.8 Lists
Objects can be grouped into lists. A list can contain elements with different types. As for strings, you
can concatenate two lists with @. The function length also gives the length of a list.

You can prepend an element to a list using .: and you can append an element to a list using :.
The following example illustrates some features:

> L = [| "foo" |];
> L = L:.1;
> L = "bar".:L;
> L;
[|"bar", "foo", 1|]
> L[1];
foo
> L@L;
[|"bar", "foo", 1, "bar", "foo", 1|]

Lists can be considered arrays and elements of lists can be referenced using brackets. Possible indices
start at 0. The following example illustrates this point:

> L = [|1,2,3,4,5|];
> L;
[|1, 2, 3, 4, 5|]
> L[3];
4

Lists may contain ellipses indicated by ,..., between elements that are constant and evaluate to
integers that are incrementally ordered. Sollya translates such ellipses to the full list upon evaluation.
The use of ellipses between elements that are not constants is not allowed. This feature is provided for
ease of programming; remark that the complexity for expanding such lists is high. For illustration, see
the following example:

> [|1,...,5|];
[|1, 2, 3, 4, 5|]
> [|-5,...,5|];
[|-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5|]
> [|3,...,1|];
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> [|true,...,false|];
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

20

Lists may be continued to infinity by means of the ... indicator after the last element given. At least
one element must explicitly be given. If the last element given is a constant expression that evaluates to
an integer, the list is considered as continued to infinity by all integers greater than that last element. If
the last element is another object, the list is considered as continued to infinity by re-duplicating this last
element. Let us remark that bracket notation is supported for such end-elliptic lists even for implicitly
given elements. However, evaluation complexity is high. Combinations of ellipses inside a list and in its
end are possible. The usage of lists described here is best illustrated by the following examples:

> L = [|1,2,true,3...|];
> L;
[|1, 2, true, 3...|]
> L[2];
true
> L[3];
3
> L[4];
4
> L[1200];
1200
> L = [|1,...,5,true...|];
> L;
[|1, 2, 3, 4, 5, true...|]
> L[1200];
true

5.9 Structures
In a similar way as in lists, Sollya allows data to be grouped in – untyped – structures. A structure
forms an object to which other objects can be added as elements and identified by their names. The
elements of a structure can be retrieved under their name and used as usual. The following sequence
shows that point:

> s.a = 17;
> s.b = exp(x);
> s.a;
17
> s.b;
exp(x)
> s.b(1);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
2.7182818284590452353602874713526624977572470937
> s.d.a = [-1;1];
> s.d.b = sin(x);
> inf(s.d.a);
-1
> diff(s.d.b);
cos(x)

Structures can also be defined literally using the syntax illustrated in the next example. They will
also be printed in that syntax.

21

> a = { .f = exp(x), .dom = [-1;1] };
> a;
{ .f = exp(x), .dom = [-1;1] }
> a.f;
exp(x)
> a.dom;
[-1;1]
> b.f = sin(x);
> b.dom = [-1b-5;1b-5];
> b;
{ .dom = [-3.125e-2;3.125e-2], .f = sin(x) }
> { .f = asin(x), .dom = [-1;1] }.f(1);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
1.57079632679489661923132169163975144209858469968754

If the variable a is bound to an existing structure, it is possible to use the “dot notation” a.b to
assign the value of the field b of the structure a. This works even if b is not yet a field of a: in this case
a new field is created inside the structure a.

Besides, the dot notation can be used even when a is unassigned. In this case a new structure is
created with a field b, and this structure is bound to a. However, the dot notation cannot be used if a
is already bound to something that is not a structure.

These principles apply recursively: for instance, if a is a structure that contains only one field d, the
command a.b.c = 3 creates a new field named b inside the structure a; this field itself is a structure
containing the field c. The command a.d.c = 3 is allowed if a.d is already a structure, but forbidden
otherwise (e.g., if a.d was equal to sin(x)). This is summed up in the following example.

> restart;
The tool has been restarted.
> a.f = exp(x);
> a.dom = [-1;1];
> a.info.text = "My akrnoximation problem";
> a;
{ .info = { .text = "My akrnoximation problem" }, .dom = [-1;1], .f = exp(x) }
>
> a.info.text = "My approximation problem";
> a;
{ .info = { .text = "My approximation problem" }, .dom = [-1;1], .f = exp(x) }
>
> b = exp(x);
> b.a = 5;
Warning: cannot modify an element of something that is not a structure.
Warning: the last assignment will have no effect.
> b;
exp(x)
>
> a.dom.a = -1;
Warning: cannot modify an element of something that is not a structure.
Warning: the last assignment will have no effect.
> a;
{ .info = { .text = "My approximation problem" }, .dom = [-1;1], .f = exp(x) }

When printed, the elements of a structure are not sorted in any manner. They get printed in an
arbitrary order that just maintains the order given in the definition of literate structures. That said,
when compared, two structures compare equal iff they contain the same number of identifiers, with the

22

same names and iff the elements of corresponding names all compare equal. This means the order does
not matter in comparisons and otherwise does only for printing.

The following example illustrates this matter:

> a = { .f = exp(x), .a = -1, .b = 1 };
> a;
{ .f = exp(x), .a = -1, .b = 1 }
> a.info = "My function";
> a;
{ .info = "My function", .f = exp(x), .a = -1, .b = 1 }
>
> b = { .a = -1, .f = exp(x), .info = "My function", .b = 1 };
> b;
{ .a = -1, .f = exp(x), .info = "My function", .b = 1 }
>
> a == b;
true
>
> b.info = "My other function";
> a == b;
false
>
> b.info = "My function";
> a == b;
true
> b.something = true;
> a == b;
false

6 Iterative language elements: assignments, conditional state-
ments and loops

6.1 Blocks
Statements in Sollya can be grouped in blocks, so-called begin-end-blocks. This can be done using the
key tokens { and }. Blocks declared this way are considered to be one single statement. As already
explained in Section 4, using begin-end-blocks also opens the possibility of declaring variables through
the keyword var.

6.2 Assignments
Sollya has two different assignment operators, = and :=. The assignment operator = assigns its right-
hand-object “as is”, i.e., without evaluating functional expressions. For instance, i = i + 1; will deref-
erentiate the identifier i with some content, notate it 𝑦, build up the expression (function) 𝑦 + 1 and
assign this expression back to i. In the example, if i stood for the value 1000, the statement i = i +
1; would assign “1000 + 1” – and not “1001” – to i. The assignment operator := evaluates constant
functional expressions before assigning them. On other expressions it behaves like =. Still in the example,
the statement i := i + 1; really assigns 1001 to i.

Both Sollya assignment operators support indexing of lists or strings elements using brackets on the
left-hand-side of the assignment operator. The indexed element of the list or string gets replaced by the
right-hand-side of the assignment operator. When indexing strings this way, that right-hand side must
evaluate to a string of length 1. End-elliptic lists are supported with their usual semantic for this kind
of assignment. When referencing and assigning a value in the implicit part of the end-elliptic list, the
list gets expanded to the corresponding length.

The following examples well illustrate the behavior of assignment statements:

23

> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> i = 1000;
> i = i + 1;
> print(i);
1000 + 1
> i := i + 1;
> print(i);
1002
> L = [|1,...,5|];
> print(L);
[|1, 2, 3, 4, 5|]
> L[3] = L[3] + 1;
> L[4] := L[4] + 1;
> print(L);
[|1, 2, 3, 4 + 1, 6|]
> L[5] = true;
> L;
[|1, 2, 3, 5, 6, true|]
> s = "Hello world";
> s;
Hello world
> s[1] = "a";
> s;
Hallo world
> s[2] = "foo";
Warning: the string to be assigned is not of length 1.
This command will have no effect.
> L = [|true,1,...,5,9...|];
> L;
[|true, 1, 2, 3, 4, 5, 9...|]
> L[13] = "Hello";
> L;
[|true, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, "Hello", 17...|]

The indexing of lists on left-hand sides of assignments is reduced to the first order. Multiple indexing
of lists of lists on assignment is not supported for complexity reasons. Multiple indexing is possible in
right-hand sides.

> L = [| 1, 2, [|"a", "b", [|true, false|] |] |];
> L[2][2][1];
false
> L[2][2][1] = true;
Warning: the first element of the left-hand side is not an identifier.
This command will have no effect.
> L[2][2] = "c";
Warning: the first element of the left-hand side is not an identifier.
This command will have no effect.
> L[2] = 3;
> L;
[|1, 2, 3|]

6.3 Conditional statements
Sollya supports conditional statements expressed with the keywords if, then and optionally else. Let
us mention that only conditional statements are supported and not conditional expressions.

24

The following examples illustrate both syntax and semantic of conditional statements in Sollya.
Concerning syntax, be aware that there must not be any semicolon before the else keyword.

> a = 3;
> b = 4;
> if (a == b) then print("Hello world");
> b = 3;
> if (a == b) then print("Hello world");
Hello world
> if (a == b) then print("You are telling the truth") else print("Liar!");
You are telling the truth

6.4 Loops
Sollya supports three kinds of loops. General while-condition loops can be expressed using the keywords
while and do. One has to be aware of the fact that the condition test is executed always before the loop,
there is no do-until-condition loop. Consider the following examples for both syntax and semantic:

> verbosity = 0!;
> prec = 30!;
> i = 5;
> while (expm1(i) > 0) do { expm1(i); i := i - 1; };
147.4131591
53.59815
19.08553693
6.3890561
1.718281828
> print(i);
0

The second kind of loops are loops on a variable ranging from a numerical start value and a end
value. These kind of loops can be expressed using the keywords for, from, to, do and optionally by.
The by statement indicates the width of the steps on the variable from the start value to the end value.
Once again, syntax and semantic are best explained with an example:

> for i from 1 to 5 do print ("Hello world",i);
Hello world 1
Hello world 2
Hello world 3
Hello world 4
Hello world 5
> for i from 2 to 1 by -0.5 do print("Hello world",i);
Hello world 2
Hello world 1.5
Hello world 1

The third kind of loops are loops on a variable ranging on values contained in a list. In order to
ensure the termination of the loop, that list must not be end-elliptic. The loop is expressed using the
keywords for, in and do as in the following examples:

25

> L = [|true, false, 1,...,4, "Hello", exp(x)|];
> for i in L do i;
true
false
1
2
3
4
Hello
exp(x)

For both types of for loops, assigning the loop variable is allowed and possible. When the loop
terminates, the loop variable will contain the value that made the loop condition fail. Consider the
following examples:

> for i from 1 to 5 do { if (i == 3) then i = 4 else i; };
1
2
5
> i;
6

7 Functional language elements: procedures and pattern match-
ing

7.1 Procedures
Sollya has some elements of functional languages. In order to avoid confusion with mathematical
functions, the associated programming objects are called procedures in Sollya.

Sollya procedures are common objects that can be, for example, assigned to variables or stored in
lists. Procedures are declared by the proc keyword; see Section 8.143 for details. The returned procedure
object must then be assigned to a variable. It can hence be applied to arguments with common application
syntax. The procedure keyword provides an abbreviation for declaring and assigning a procedure; see
Section 8.144 for details.

Sollya procedures can return objects using the return keyword at the end of the begin-end-block of
the procedure. Section 8.158 gives details on the usage of return. Procedures further can take any type
of object in argument, in particular also other procedures that are then applied to arguments. Procedures
can be declared inside other procedures.

Common Sollya procedures are declared with a certain number of formal parameters. When the
procedure is applied to actual parameters, a check is performed if the right number of actual parameters
is given. Then the actual parameters are applied to the formal parameters. In some cases, it is required
that the number of parameters of a procedure be variable. Sollya provides support for the case with
procedures with an arbitrary number of actual arguments. When the procedure is called, those actual
arguments are gathered in a list which is applied to the only formal list parameter of a procedure with
an arbitrary number of arguments. See Section 8.144 for the exact syntax and details; an example is
given just below.

Let us remark that declaring a procedure does not involve any evaluation or other interpretation
of the procedure body. In particular, this means that constants are evaluated to floating-point values
inside Sollya when the procedure is applied to actual parameters and the global precision valid at this
moment.

Sollya procedures are well illustrated with the following examples:

26

> succ = proc(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
{
nop;
return (n) + (1);
}

> add = proc(m,n) { var res; res := m + n; return res; };
> add(5,6);
11
> hey = proc() { print("Hello world."); };
> hey();
Hello world.
> print(hey());
Hello world.
void
> hey;
proc()
{
print("Hello world.");
return void;
}

> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };

> fac(5);
120
> fac(11);
39916800
> fac;
proc(n)
{
var res;
if (n) == (0) then
res := 1
else
res := (n) * (fac((n) - (1)));
return res;
}

27

> sumall = proc(args = ...) { var i, acc; acc = 0; for i in args do acc = acc +
i; return acc; };
> sumall;
proc(args = ...)
{
var i, acc;
acc = 0;
for i in args do
acc = (acc) + (i);
return acc;
}
> sumall();
0
> sumall(1);
1
> sumall(1,5);
6
> sumall(1,5,9);
15
> sumall @ [|1,5,9,4,8|];
27
>

Let us note that, when writing a procedure, one does not know what will be the name of the free
variable at run-time. This is typically the context when one should use the special keyword _x_:

> ChebPolynomials = proc(n) {
var i, res;
if (n<0) then res = [||]
else if (n==0) then res = [|1|]
else {

res = [|1, _x_|];
for i from 2 to n do res[i] = horner(2*_x_*res[i-1]-res[i-2]);

};
return res;

};
>
> f = sin(x);
> T = ChebPolynomials(4);
> canonical = on!;
> for i from 0 to 4 do T[i];
1
x
-1 + 2 * x^2
-3 * x + 4 * x^3
1 + -8 * x^2 + 8 * x^4

Sollya also supports external procedures, i.e., procedures written in C (or some other language) and
dynamically bound to Sollya identifiers. See 8.64 for details.

7.2 Pattern matching
Starting with version 3.0, Sollya supports matching expressions with expression patterns. This feature
is important for an extended functional programming style. Further, and most importantly, it allows
expression trees to be recursively decomposed using native constructs of the Sollya language. This means
no help from external procedures or other compiled-language mechanisms is needed here anymore.

28

Basically, pattern matching supports relies on one Sollya construct:
match expr with
pattern1 : (return-expr1)
pattern2 : (return-expr2)
...
patternN : (return-exprN)

That construct has the following semantic: try to match the expression expr with the patterns pattern1
through patternN, proceeding in natural order. If a pattern patternI is found that matches, evaluate
the whole match ... with construct to the return expression return-exprI associated with the matching
pattern patternI. If no matching pattern is found, display an error warning and return error. Note that
the parentheses around the expressions return-exprI are mandatory.

Matching a pattern means the following:

∙ If a pattern does not contain any programming-language-level variables (different from the free
mathematical variable), it matches expressions that are syntactically equal to itself. For instance,
the pattern exp(sin(3 * x)) will match the expression exp(sin(3 * x)), but it does not match
exp(sin(x * 3)) because the expressions are not syntactically equal.

∙ If a pattern does contain variables, it matches an expression expr if these variables can be bound
to subexpressions of expr such that once the pattern is evaluated with that variable binding, it
becomes syntactically equal to the expression expr. For instance, the pattern exp(sin(a * x)) will
match the expression exp(sin(3 * x)) as it is possible to bind a to 3 such that exp(sin(a * x))
evaluates to exp(sin(3 * x)).

If a pattern patternI with variables is matched in a match ... with construct, the variables in the
pattern stay bound during the evaluation of the corresponding return expression return-exprI. This allows
subexpressions to be extracted from expressions and/or recursively handled as needed.

The following examples illustrate the basic principles of pattern matching in Sollya. One can remark
that it is useful to use the keyword _x_ when one wants to be sure to refer to the free variable in a pattern
matching:

29

> match exp(x) with
exp(x) : (1)
sin(x) : (2)
default : (3);

1
>
> match sin(x) with

exp(x) : (1)
sin(x) : (2)
default : (3);

2
>
> match exp(sin(x)) with

exp(x) : ("Exponential of x")
exp(sin(x)) : ("Exponential of sine of x")
default : ("Something else");

Exponential of sine of x
>
> match exp(sin(x)) with

exp(x) : ("Exponential of x")
exp(a) : ("Exponential of " @ a)
default : ("Something else");

Exponential of sin(x)
>
>
> procedure differentiate(f) {

return match f with
g + h : (differentiate(g) + differentiate(h))
g * h : (differentiate(g) * h + differentiate(h) * g)
g / h : ((differentiate(g) * h - differentiate(h) * g) / (h^2))
exp(_x_) : (exp(_x_))
sin(_x_) : (cos(_x_))
cos(_x_) : (-sin(_x_))
g(h) : ((differentiate(g))(h) * differentiate(h))
x : (1)
h(_x_) : (NaN)
c : (0);

};
>
> rename(x,y);
Information: the free variable has been renamed from "x" to "y".
> differentiate(exp(sin(y + y)));
exp(sin(y * 2)) * cos(y * 2) * 2
> diff(exp(sin(y + y)));
exp(sin(y * 2)) * cos(y * 2) * 2
>

As Sollya is not a purely functional language, the match ... with construct can also be used in a
more imperative style, which makes it become closer to constructs like switch in C or Perl. In lieu of
a simple return expression, a whole block of imperative statements can be given. The expression to be
returned by that block is indicated in the end of the block, using the return keyword. That syntax is
illustrated in the next example:

30

> match exp(sin(x)) with
exp(a) : {

write("Exponential of ", a, "\n");
return a;

}
sin(x) : {

var foo;
foo = 17;
write("Sine of x\n");
return foo;

}
default : {

write("Something else\n");
bashexecute("LANG=C date");
return true;

};
Exponential of sin(x)
sin(x)
>
> match sin(x) with

exp(a) : {
write("Exponential of ", a, "\n");
return a;

}
sin(x) : {

var foo;
foo = 17;
write("Sine of x\n");
return foo;

}
default : {

write("Something else\n");
bashexecute("LANG=C date");
return true;

};
Sine of x
17
>
> match acos(17 * pi * x) with

exp(a) : {
write("Exponential of ", a, "\n");
return a;

}
sin(x) : {

var foo;
foo = 17;
write("Sine of x\n");
return foo;

}
default : {

write("Something else\n");
bashexecute("LANG=C date");
return true;

};
Something else
Fri Aug 24 11:17:01 CEST 2018
true

31

In the case when no return statement is indicated for a statement-block in a match ... with con-
struct, the construct evaluates to the special value void if that pattern matches.

In order to well understand pattern matching in Sollya, it is important to realize the meaning
of variables in patterns. This meaning is different from the one usually found for variables. In a
pattern, variables are never evaluated to whatever they might have set before the pattern is executed.
In contrast, all variables in patterns are new, free variables that will freshly be bound to subexpressions
of the matching expression. If a variable of the same name already exists, it will be shadowed during the
evaluation of the statement block and the return expression corresponding to the matching expression.
This type of semantic implies that patterns can never be computed at run-time, they must always be
hard-coded beforehand. However this is necessary to make pattern matching context-free.

As a matter of course, all variables figuring in the expression expr to be matched are evaluated before
pattern matching is attempted. In fact, expr is a usual Sollya expression, not a pattern.

In Sollya, the use of variables in patterns does not need to be linear. This means the same variable
might appear twice or more in a pattern. Such a pattern will only match an expression if it contains the
same subexpression, associated with the variable, in all places indicated by the variable in the pattern.

The following examples illustrate the use of variables in patterns in detail:

> a = 5;
> b = 6;
> match exp(x + 3) with

exp(a + b) : {
print("Exponential");
print("a = ", a);
print("b = ", b);

}
sin(x) : {

print("Sine of x");
};

Exponential
a = x
b = 3
> print("a = ", a, ", b = ", b);
a = 5 , b = 6
>
> a = 5;
> b = 6;
> match exp(x + 3) with

exp(a + b) : {
var a, c;
a = 17;
c = "Hallo";
print("Exponential");
print("a = ", a);
print("b = ", b);
print("c = ", c);

}
sin(x) : {

print("Sine of x");
};

Exponential
a = 17
b = 3
c = Hallo
> print("a = ", a, ", b = ", b);
a = 5 , b = 6

32

> match exp(sin(x)) + sin(x) with
exp(a) + a : {

print("Winner");
print("a = ", a);

}
default : {

print("Loser");
};

Winner
a = sin(x)
>
> match exp(sin(x)) + sin(3 * x) with

exp(a) + a : {
print("Winner");
print("a = ", a);

}
default : {

print("Loser");
};

Loser
>
> f = exp(x);
> match f with

sin(x) : (1)
cos(x) : (2)
exp(x) : (3)
default : (4);

3

Pattern matching is meant to be a means to decompose expressions structurally. For this reason
and in an analogous way to variables, no evaluation is performed at all on (sub-)expressions that form
constant functions. As a consequence, patterns match constant expressions only if they are structurally
identical. For example 5 + 1 only matches 5 + 1 and not 1 + 5, 3 + 3 nor 6.

This general rule on constant expressions admits one exception. Intervals in Sollya can be defined
using constant expressions as bounds. These bounds are immediately evaluated to floating-point con-
stants, though. In order to permit pattern matching on intervals, constant expressions given as bounds
of intervals that form patterns are evaluated before pattern matching. However, in order not conflict
with the rules of no evaluation of variables, these constant expressions as bounds of intervals in patterns
must not contain free variables.

33

> match 5 + 1 with
1 + 5 : ("One plus five")
6 : ("Six")
5 + 1 : ("Five plus one");

Five plus one
>
> match 6 with

1 + 5 : ("One plus five")
6 : ("Six")
5 + 1 : ("Five plus one");

Six
>
> match 1 + 5 with

1 + 5 : ("One plus five")
6 : ("Six")
5 + 1 : ("Five plus one");

One plus five
>
> match [1; 5 + 1] with

[1; 1 + 5] : ("Interval from one to one plus five")
[1; 6] : ("Interval from one to six")
[1; 5 + 1] : ("Interval from one to five plus one");

Interval from one to one plus five
>
> match [1; 6] with

[1; 1 + 5] : ("Interval from one to one plus five")
[1; 6] : ("Interval from one to six")
[1; 5 + 1] : ("Interval from one to five plus one");

Interval from one to one plus five
>

The Sollya keyword default has a special meaning in patterns. It acts like a wild-card, matching any
(sub-)expression, as long as the whole expression stays correctly typed. Upon matching with default,
no variable gets bound. This feature is illustrated in the next example:

34

> match exp(x) with
sin(x) : ("Sine of x")
atan(x^2) : ("Arctangent of square of x")
default : ("Something else")
exp(x) : ("Exponential of x");

Something else
>
> match atan(x^2) with

sin(x) : ("Sine of x")
atan(default^2) : ("Arctangent of the square of something")
default : ("Something else");

Arctangent of the square of something
>
> match atan(exp(x)^2) with

sin(x) : ("Sine of x")
atan(default^2) : ("Arctangent of the square of something")
default : ("Something else");

Arctangent of the square of something
>
> match exp("Hello world") with

exp(default) : ("A miracle has happened")
default : ("Something else");

Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

In Sollya, pattern matching is possible on the following Sollya types and operations defined on
them:

∙ Expressions that define univariate functions, as explained above,

∙ Intervals with one, two or no bound defined in the pattern by a variable,

∙ Character sequences, literate or defined using the @ operator, possibly with a variable on one of
the sides of the @ operator,

∙ Lists, literate, literate with variables or defined using the .:, :. and @ operators, possibly with a
variable on one of the sides of the @ operator or one or two variables for .: and :.,

∙ Structures, literate or literate with variables, and

∙ All other Sollya objects, matchable with themselves (DE matches DE, on matches on, perturb
matches perturb etc.)

35

> procedure detector(obj) {
match obj with

exp(a * x) : { "Exponential of ", a, " times x"; }
[a; 17] : { "An interval from ", a, " to 17"; }
[| |] : { "Empty list"; }
[| a, b, 2, exp(c) |] : { "A list of ", a, ", ", b, ", 2 and ",

"exponential of ", c; }
a @ [| 2, 3 |] : { "Concatenation of the list ", a, " and ",

"the list of 2 and 3"; }
a .: [| 9 ... |] : { a, " prepended to all integers >= 9"; }
"Hello" @ w : { "Hello concatenated with ", w; }
{ .a = sin(b);

.b = [c;d] } : { "A structure containing as .a the ",
"sine of ", b,
" and as .b the range from ", c,
" to ", d; }

perturb : { "The special object perturb"; }
default : { "Something else"; };

};
>
> detector(exp(5 * x));
Exponential of 5 times x
> detector([3.25;17]);
An interval from 3.25 to 17
> detector([||]);
Empty list
> detector([| sin(x), nearestint(x), 2, exp(5 * atan(x)) |]);
A list of sin(x), nearestint(x), 2 and exponential of 5 * atan(x)
> detector([| sin(x), cos(5 * x), "foo", 2, 3 |]);
Concatenation of the list [|sin(x), cos(x * 5), "foo"|] and the list of 2 and 3
> detector([| DE, 9... |]);
doubleextended prepended to all integers >= 9
> detector("Hello world");
Hello concatenated with world
> detector({ .a = sin(x); .c = "Hello"; .b = [9;10] });
A structure containing as .a the sine of x and as .b the range from 9 to 10
> detector(perturb);
The special object perturb
> detector([13;19]);
Something else

Concerning intervals, please pay attention to the fact that expressions involving intervals are imme-
diately evaluated and that structural pattern matching on functions on intervals is not possible. This
point is illustrated in the next example:

36

> match exp([1;2]) with
[a;b] : {

a,", ",b;
}

default : {
"Something else";

};
2.7182818284590452353602874713526624977572470936999, 7.3890560989306502272304274
605750078131803155705519
>
> match exp([1;2]) with

exp([a;b]) : {
a,", ", b;

}
default : {

"Something else";
};

Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
>
> match exp([1;2]) with

exp(a) : {
"Exponential of ", a;

}
default : {

"Something else";
};

Something else

With respect to pattern matching on lists or character sequences defined using the @ operator, the
following is to be mentioned:

∙ Patterns like a @ b are not allowed as they would need to perform an ambiguous cut of the list or
character sequence to be matched. This restriction is maintained even if the variables (here a and
b) are constrained by other occurrences in the pattern (for example in a list) which would make
the cut unambiguous.

∙ Recursive use of the @ operator (even mixed with the operators .: and :.) is possible under the
condition that there must not exist any other parenthesizing of the term in concatenations (@) such
that the rule of one single variable for @ above gets violated. For instance, ([| 1 |] @ a) @ (b
@ [| 4 |]) is not possible as it can be re-parenthesized [| 1 |] @ (a @ b) @ [| 4 |], which
exhibits the ambiguous case.

These points are illustrated in this example:

37

> match [| exp(sin(x)), sin(x), 4, DE(x), 9... |] with
exp(a) .: (a .: (([||] :. 4) @ (b @ [| 13... |]))) :

{ "a = ", a, ", b = ", b; };
a = sin(x), b = [|doubleextended(x), 9, 10, 11, 12|]
>
> match [| 1, 2, 3, 4, D... |] with

a @ [| 4, D...|] : (a);
[|1, 2, 3|]
>
> match [| 1, 2, 3, 4, D... |] with

a @ [| D...|] : (a);
[|1, 2, 3, 4|]
>
> match [| 1, 2, 3, 4... |] with

a @ [| 3...|] : (a);
[|1, 2|]
>
> match [| 1, 2, 3, 4... |] with

a @ [| 4...|] : (a);
[|1, 2, 3|]
>
> match [| 1, 2, 3, 4... |] with

a @ [| 17...|] : (a);
[|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16|]
>
> match [| 1, 2, 3, 4... |] with

a @ [| 17, 18, 19 |] : (a)
default : ("Something else");

Something else

As mentioned above, pattern matching on Sollya structures is possible. Patterns for such a match
are given in a literately, i.e., using the syntax { .a = exprA, .b = exprB, . . . }. A structure pattern
sp will be matched by a structure s iff that structure s contains at least all the elements (like .a, .b
etc.) of the structure pattern sp and iff each of the elements of the structure s matches the pattern in
the corresponding element of the structure pattern sp. The user should be aware of the fact that the
structure to be matched is only supposed to have at least the elements of the pattern but that it may
contain more elements is a particular Sollya feature. For instance with pattern matching, it is hence
possible to ensure that access to particular elements will be possible in a particular code segment. The
following example is meant to clarify this point:

38

> structure.f = exp(x);
> structure.dom = [1;2];
> structure.formats = [| DD, D, D, D |];
> match structure with

{ .f = sin(x);
.dom = [a;b]

} : { "Sine, ",a,", ",b; }
{ .f = exp(c);

.dom = [a;b];

.point = default
} : { "Exponential, ",a, ", ", b, ", ", c; }
{ .f = exp(x);

.dom = [a;b]
} : { "Exponential, ",a, ", ", b; }
default : { "Something else"; };

Exponential, 1, 2
>
> structure.f = sin(x);
> match structure with

{ .f = sin(x);
.dom = [a;b]

} : { "Sine, ",a,", ",b; }
{ .f = exp(c);

.dom = [a;b];

.point = default
} : { "Exponential, ",a, ", ", b, ", ", c; }
{ .f = exp(x);

.dom = [a;b]
} : { "Exponential, ",a, ", ", b; }
default : { "Something else"; };

Sine, 1, 2
>
> structure.f = exp(x + 2);
> structure.point = 23;
> match structure with

{ .f = sin(x);
.dom = [a;b]

} : { "Sine, ",a,", ",b; }
{ .f = exp(c);

.dom = [a;b];

.point = default
} : { "Exponential, ",a, ", ", b, ", ", c; }
{ .f = exp(x);

.dom = [a;b]
} : { "Exponential, ",a, ", ", b; }
default : { "Something else"; };

Exponential, 1, 2, 2 + x

8 Commands and functions
8.1 abs
Name: abs

the absolute value.

Library names:

39

sollya_obj_t sollya_lib_abs(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_abs(sollya_obj_t)
#define SOLLYA_ABS(x) sollya_lib_build_function_abs(x)

Description:

∙ abs is the absolute value function. abs(x)=
{︂

𝑥 𝑥 > 0
−𝑥 𝑥 ≤ 0 .

8.2 absolute
Name: absolute

indicates an absolute error for externalplot, fpminimax or supnorm

Library names:
sollya_obj_t sollya_lib_absolute()
int sollya_lib_is_absolute(sollya_obj_t)

Usage:

absolute : absolute|relative

Description:

∙ The use of absolute in the command externalplot indicates that during plotting in externalplot
an absolute error is to be considered.
See externalplot for details.

∙ Used with fpminimax, absolute indicates that fpminimax must try to minimize the absolute
error.
See fpminimax for details.

∙ When given in argument to supnorm, absolute indicates that an absolute error is to be considered
for supremum norm computation.
See supnorm for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",absolute,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.63), fpminimax (8.71), relative (8.154), bashexecute (8.18), supnorm
(8.180)

8.3 accurateinfnorm
Name: accurateinfnorm

computes a faithful rounding of the infinity norm of a function

Usage:

accurateinfnorm(function,range,constant) : (function, range, constant) → constant
accurateinfnorm(function,range,constant,exclusion range 1,...,exclusion range n) : (function, range,

constant, range, ..., range) → constant

Parameters:

∙ function represents the function whose infinity norm is to be computed

∙ range represents the infinity norm is to be considered on

40

∙ constant represents the number of bits in the significant of the result

∙ exclusion range 1 through exclusion range n represent ranges to be excluded

Description:

∙ The command accurateinfnorm computes an upper bound to the infinity norm of function func-
tion in range. This upper bound is the least floating-point number greater than the value of the
infinity norm that lies in the set of dyadic floating point numbers having constant significant man-
tissa bits. This means the value accurateinfnorm evaluates to is at the time an upper bound and
a faithful rounding to constant bits of the infinity norm of function function on range range.
If given, the fourth and further arguments of the command accurateinfnorm, exclusion range 1
through exclusion range n the infinity norm of the function function is not to be considered on.

∙ The command accurateinfnorm is now considered DEPRECATED in Sollya. Users should be
aware about the fact that the algorithm behind accurateinfnorm is highly inefficient and that
other, better suited algorithms, such as supnorm, are available inside Sollya. As a matter of
fact, while accurateinfnorm is maintained for compatibility reasons with legacy Sollya codes,
users are advised to avoid using accurateinfnorm in new Sollya scripts and to replace it, where
possible, by the supnorm command.

Example 1:

> p = remez(exp(x), 5, [-1;1]);
> accurateinfnorm(p - exp(x), [-1;1], 20);
4.52055246569216251373291015625e-5
> accurateinfnorm(p - exp(x), [-1;1], 30);
4.5205513970358879305422306060791015625e-5
> accurateinfnorm(p - exp(x), [-1;1], 40);
4.520551396713923253400935209356248378753662109375e-5

Example 2:

> p = remez(exp(x), 5, [-1;1]);
> midpointmode = on!;
> infnorm(p - exp(x), [-1;1]);
0.45205~5/7~e-4
> accurateinfnorm(p - exp(x), [-1;1], 40);
4.520551396713923253400935209356248378753662109375e-5

See also: infnorm (8.91), dirtyinfnorm (8.43), supnorm (8.180), checkinfnorm (8.25), remez
(8.155), diam (8.39)

8.4 acos
Name: acos

the arccosine function.

Library names:
sollya_obj_t sollya_lib_acos(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_acos(sollya_obj_t)
#define SOLLYA_ACOS(x) sollya_lib_build_function_acos(x)

Description:

∙ acos is the inverse of the function cos: acos(𝑦) is the unique number 𝑥 ∈ [0; 𝜋] such that cos(𝑥)=𝑦.

∙ It is defined only for 𝑦 ∈ [−1; 1].

See also: cos (8.30)

41

8.5 acosh
Name: acosh

the arg-hyperbolic cosine function.

Library names:
sollya_obj_t sollya_lib_acosh(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_acosh(sollya_obj_t)
#define SOLLYA_ACOSH(x) sollya_lib_build_function_acosh(x)

Description:

∙ acosh is the inverse of the function cosh: acosh(y) is the unique number 𝑥 ∈ [0; +∞] such that
cosh(x)=y.

∙ It is defined only for 𝑦 ∈ [0; +∞].

See also: cosh (8.31)

8.6 &&
Name: &&

boolean AND operator

Library name:
sollya_obj_t sollya_lib_and(sollya_obj_t, sollya_obj_t)

Usage:

expr1 && expr2 : (boolean, boolean) → boolean

Parameters:

∙ expr1 and expr2 represent boolean expressions

Description:

∙ && evaluates to the boolean AND of the two boolean expressions expr1 and expr2. && evaluates
to true iff both expr1 and expr2 evaluate to true.

Example 1:

> true && false;
false

Example 2:

> (1 == exp(0)) && (0 == log(1));
true

See also: || (8.124), ! (8.117)

8.7 annotatefunction
Name: annotatefunction

Annotates a Sollya function object with an approximation that is faster to evaluate

Library names:
sollya_obj_t sollya_lib_annotatefunction(sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, ...);
sollya_obj_t sollya_lib_v_annotatefunction(sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t,
va_list);

Usage:

42

annotatefunction(f, g, I, d) : (function, function, range, range) → function
annotatefunction(f, g, I, d, 𝑥0) : (function, function, range, range, constant) → function

Parameters:

∙ f is a function.

∙ g is a function, in most cases a polynomial.

∙ I is an interval.

∙ d is an interval.

∙ 𝑥0 is a constant (default value is 0 when not provided).

Description:

∙ When a given function f is to be evaluated at several points of a given interval I to a given precision,
it might be useful to precompute a good approximant g of f and further evaluate it instead of f when
the approximation is good enough to provide the desire precision. If f is a complicated expression,
whereas g is, e.g., a polynomial of low degree, the cost of precomputing g can be well compensated
by the gain of time in each subsequent evaluation. The purpose of annotatefunction is to provide
such a mechanism to the user.

∙ When using annotatefunction(f, g, I, d, 𝑥0), resp. annotatefunction(f, g, I, d) (where 𝑥0 is
assumed to be zero), it is assumed that

∀𝑥 ∈ 𝐼, 𝑓(𝑥) − 𝑔(𝑥 − 𝑥0) ∈ 𝑑.

It is the user responsibility to ensure this property. Otherwise, any subsequent use of f on points
of I might lead to incorrect values.

∙ A call to annotatefunction(f, g, I, d, 𝑥0) annotates the given Sollya function object f with the
approximation g. In further use, when asked to evaluate f on a point 𝑥 of I, Sollya will first
evaluate g on 𝑥 − 𝑥0 and check if the result is accurate enough in the given context (accounting
for the fact that the error of approximation between the true value and 𝑔(𝑥 − 𝑥0) belongs to d). If
not (and only in this case), an evaluation of the expression of f on 𝑥 is performed.

∙ The approximation g can be any Sollya function but particular performance is expected when g
is a polynomial. Upon annotation with a polynomial, precomputations are performed to analyze
certain properties of the given approximation polynomial.

∙ annotatefunction updates the internal representation of f so as to persistently keep this infor-
mation attached with the Sollya object representing f. In particular, the annotation is persistent
through copy or use of f as a subexpression to build up bigger expressions. Notice however, that
there is no way of deducing an annotation for the derivative of f from an annotation of f. So, in
general, it should not be expected that diff(f) will be automatically annotated (notice, however
that f might be a subexpression of its derivative, e.g., for f =exp or f =tan, in which case the
corresponding subexpressions of the derivative could inherit the annotations from f. It is currently
not specified whether Sollya does this automatically or not).

∙ annotatefunction really is an imperative statement that modifies the internal representation of f.
However, for convenience annotatefunction returns f itself.

∙ Sollya function objects can be annotated more than once with different approximations on different
domains, that do not need to be disjoint. Upon evaluation of the annotated function object, Sollya
chooses an approximation annotation (if any) that provides for sufficient accuracy at the evaluation
point. It is not specified in which order Sollya tries different possible annotations when several
are available for a given point x.

Example 1:

43

> verbosity=1!;
> procedure EXP(X,n,p) {

var res, oldPrec;
oldPrec = prec;
prec = p!;
"Using procedure function exponential with X=" @ X @ ", n=" @ n @ ",

and p=" @ p;
res = exp(X);
prec = oldPrec!;
return res;

};
> g = function(EXP);
> p = 46768052394588893382516870161332864698044514954899b-165 + x * (23384026197
294446691258465802074096632225783601255b-164 + x * (58460065493236116729484266
13035653821819225877423b-163 + x * (389733769954907444862769649080681513731982
1946501b-164 + x * (7794675399098148717422744621371434831048848817417b-167 + x
* (24942961277114075921122941174178849425809856036737b-171 + x * (83143204257

04876115613838900105097456456371179471b-172 + x * (190041609730397013715793569
91645932289422670402995b-176 + x * (190041609726693241489121222544499121560039
26801563b-179 + x * (33785175062542597526738679493857229456702396042255b-183 +
x * (6757035113643674378393625988264926886191860669891b-184 + x * (9828414707

511252769908089206114262766633532289937b-188 + x * (26208861108003813314724515
233584738706961162212965b-193 + x * (32257064253325954315953742396999456577223
350602741b-197 + x * (578429089657689569703509185903214676926704485495b-195 +
x * 2467888542176675658523627105540996778984959471957b-201))))))))))))));
> h = annotatefunction(g, p, [-1/2;1/2], [-475294848522543b-124;475294848522543b
-124]);
> h == g;
true
> prec = 24;
The precision has been set to 24 bits.
> h(0.25);
Warning: rounding has happened. The value displayed is a faithful rounding to 24
bits of the true result.

1.2840254
> prec = 165;
The precision has been set to 165 bits.
> h(0.25);
Using procedure function exponential with X=[0.25;0.25], n=0, and p=185
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
1.28402541668774148407342056806243645833628086528147

See also: chebyshevform (8.24), taylorform (8.186), remez (8.155), supnorm (8.180), infnorm
(8.91)

8.8 :.
Name: :.

add an element at the end of a list.

Library name:
sollya_obj_t sollya_lib_append(sollya_obj_t, sollya_obj_t)

Usage:

L:.x : (list, any type) → list

44

Parameters:

∙ L is a list (possibly empty).

∙ x is an object of any type.

Description:

∙ :. adds the element x at the end of the list L.

∙ Note that since x may be of any type, it can in particular be a list.

Example 1:

> [|2,3,4|]:.5;
[|2, 3, 4, 5|]

Example 2:

> [|1,2,3|]:.[|4,5,6|];
[|1, 2, 3, [|4, 5, 6|]|]

Example 3:

> [||]:.1;
[|1|]

See also: .: (8.137), @ (8.28)

8.9 ∼
Name: ∼

floating-point evaluation of a constant expression

Library name:
sollya_obj_t sollya_lib_approx(sollya_obj_t)

Usage:

∼ expression : function → constant
∼ something : any type → any type

Parameters:

∙ expression stands for an expression that is a constant

∙ something stands for some language element that is not a constant expression

Description:

∙ ∼ expression evaluates the expression that is a constant term to a floating-point constant. The
evaluation may involve a rounding. If expression is not a constant, the evaluated constant is a
faithful rounding of expression with precision bits, unless the expression is exactly 0 as a result
of cancellation. In the latter case, a floating-point approximation of some (unknown) accuracy is
returned.

∙ ∼ does not do anything on all language elements that are not a constant expression. In other words,
it behaves like the identity function on any type that is not a constant expression. It can hence be
used in any place where one wants to be sure that expressions are simplified using floating-point
computations to constants of a known precision, regardless of the type of actual language elements.

∙ ∼ error evaluates to error and provokes a warning.

45

∙ ∼ is a prefix operator not requiring parentheses. Its precedence is the same as for the unary + and
− operators. It cannot be repeatedly used without brackets.

Example 1:

> print(exp(5));
exp(5)
> print(~ exp(5));
148.41315910257660342111558004055227962348766759388

Example 2:

> autosimplify = off!;

Example 3:

> print(~sin(5 * pi));
0

Example 4:

> print(~exp(x));
exp(x)
> print(~ "Hello");
Hello

Example 5:

> print(~exp(x*5*Pi));
exp((pi) * 5 * x)
> print(exp(x* ~(5*Pi)));
exp(x * 15.7079632679489661923132169163975144209858469968757)

Example 6:

> print(~exp(5)*x);
148.41315910257660342111558004055227962348766759388 * x
> print((~exp(5))*x);
148.41315910257660342111558004055227962348766759388 * x
> print(~(exp(5)*x));
exp(5) * x

See also: evaluate (8.57), prec (8.135), error (8.56)

8.10 asciiplot
Name: asciiplot

plots a function in a range using ASCII characters

Library name:
void sollya_lib_asciiplot(sollya_obj_t, sollya_obj_t)

Usage:

asciiplot(function, range) : (function, range) → void

Parameters:

∙ function represents a function to be plotted

46

∙ range represents a range the function is to be plotted in

Description:

∙ asciiplot plots the function function in range range using ASCII characters. On systems that
provide the necessary TIOCGWINSZ ioctl, Sollya determines the size of the terminal for the plot
size if connected to a terminal. If it is not connected to a terminal or if the test is not possible,
the plot is of fixed size 77 × 25 characters. The function is evaluated on a number of points equal
to the number of columns available. Its value is rounded to the next integer in the range of lines
available. A letter x is written at this place. If zero is in the hull of the image domain of the
function, an x-axis is displayed. If zero is in range, a y-axis is displayed. If the function is constant
or if the range is reduced to one point, the function is evaluated to a constant and the constant is
displayed instead of a plot.

Example 1:

> asciiplot(exp(x),[1;2]);
xx

xx
xx

xx
xx

xxx
xx

xxx
xx

xxx
xxx

xxx
xxx

xxx
xxxx

xxx
xxxx

xxxx
xxxx

xxxx
xxxxx

xxxxx
xxxxx

xxx

Example 2:

47

> asciiplot(expm1(x),[-1;2]);
| x
| x
| x
| x
| xx
| x
| x
| xx
| x
| xx
| xx
| xx
| xx
| xx
| xx
| xxx
| xxx
| xxxx
| xxxx
| xxxx
| xxxxxx

---------------------xxxxxxxx---
xxxxxxxxxxxx |

xxxxxxxxx |

Example 3:

> asciiplot(5,[-1;1]);
5

Example 4:

> asciiplot(exp(x),[1;1]);
2.7182818284590452353602874713526624977572470937

See also: plot (8.128), externalplot (8.63)

8.11 asin
Name: asin

the arcsine function.

Library names:
sollya_obj_t sollya_lib_asin(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_asin(sollya_obj_t)
#define SOLLYA_ASIN(x) sollya_lib_build_function_asin(x)

Description:

∙ asin is the inverse of the function sin: asin(𝑦) is the unique number 𝑥 ∈ [−𝜋/2; 𝜋/2] such that
sin(𝑥)=𝑦.

∙ It is defined only for 𝑦 ∈ [−1; 1].

See also: sin (8.171)

48

8.12 asinh
Name: asinh

the arg-hyperbolic sine function.

Library names:
sollya_obj_t sollya_lib_asinh(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_asinh(sollya_obj_t)
#define SOLLYA_ASINH(x) sollya_lib_build_function_asinh(x)

Description:
∙ asinh is the inverse of the function sinh: asinh(𝑦) is the unique number 𝑥 ∈ [−∞; +∞] such that

sinh(𝑥)=𝑦.

∙ It is defined for every real number y.
See also: sinh (8.173)

8.13 atan
Name: atan

the arctangent function.

Library names:
sollya_obj_t sollya_lib_atan(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_atan(sollya_obj_t)
#define SOLLYA_ATAN(x) sollya_lib_build_function_atan(x)

Description:
∙ atan is the inverse of the function tan: atan(𝑦) is the unique number 𝑥 ∈ [−𝜋/2; +𝜋/2] such that

tan(𝑥)=𝑦.

∙ It is defined for every real number y.
See also: tan (8.183)

8.14 atanh
Name: atanh

the hyperbolic arctangent function.

Library names:
sollya_obj_t sollya_lib_atanh(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_atanh(sollya_obj_t)
#define SOLLYA_ATANH(x) sollya_lib_build_function_atanh(x)

Description:
∙ atanh is the inverse of the function tanh: atanh(𝑦) is the unique number 𝑥 ∈ [−∞; +∞] such

that tanh(𝑥)=𝑦.

∙ It is defined only for 𝑦 ∈ [−1; 1].
See also: tanh (8.184)

8.15 autodiff
Name: autodiff

Computes the first 𝑛 derivatives of a function at a point or over an interval.

Library name:
sollya_obj_t sollya_lib_autodiff(sollya_obj_t, sollya_obj_t, sollya_obj_t)

Usage:

49

autodiff(f, n, 𝑥0) : (function, integer, constant) → list
autodiff(f, n, I) : (function, integer, range) → list

Parameters:

∙ f is the function to be differentiated.

∙ n is the order of differentiation.

∙ 𝑥0 is the point at which the function is differentiated.

∙ I is the interval over which the function is differentiated.

Description:

∙ autodiff computes the first 𝑛 derivatives of 𝑓 at point 𝑥0. The computation is performed numer-
ically, without symbolically differentiating the expression of 𝑓 . Yet, the computation is safe since
small interval enclosures are produced. More precisely, autodiff returns a list [𝑓0, . . . , 𝑓𝑛] such
that, for each 𝑖, 𝑓𝑖 is a small interval enclosing the exact value of 𝑓 (𝑖)(𝑥0).

∙ Since it does not perform any symbolic differentiation, autodiff is much more efficient than diff
and should be preferred when only numerical values are necessary.

∙ If an interval 𝐼 is provided instead of a point 𝑥0, the list returned by autodiff satisfies: ∀𝑖, 𝑓 (𝑖)(𝐼) ⊆
𝑓𝑖. A particular use is when one wants to know the successive derivatives of a function at a non
representable point such as 𝜋. In this case, it suffices to call autodiff with the (almost) point
interval 𝐼 = [pi].

∙ When 𝐼 is almost a point interval, the returned enclosures 𝑓𝑖 are also almost point intervals.
However, when the interval 𝐼 begins to be fairly large, the enclosures can be deeply overestimated
due to the dependency phenomenon present with interval arithmetic.

∙ As a particular case, 𝑓0 is an enclosure of the image of 𝑓 over 𝐼. However, since the algorithm is
not specially designed for this purpose it is not very efficient for this particular task. In particular,
it is not able to return a finite enclosure for functions with removable singularities (e.g. sin(𝑥)/𝑥
at 0). The command evaluate is much more efficient for computing an accurate enclosure of the
image of a function over an interval.

Example 1:

> L = autodiff(exp(cos(x))+sin(exp(x)), 5, 0);
> midpointmode = on!;
> for f_i in L do f_i;
0.3559752813266941742012789792982961497379810154498~2/4~e1
0.5403023058681397174009366074429766037323104206179~0/3~
-0.3019450507398802024611853185539984893647499733880~6/2~e1
-0.252441295442368951995750696489089699886768918239~6/4~e1
0.31227898756481033145214529184139729746320579069~1/3~e1
-0.16634307959006696033484053579339956883955954978~3/1~e2

Example 2:

50

> f = log(cos(x)+x);
> L = autodiff(log(cos(x)+x), 5, [2,4]);
> L[0];
[0;1.27643852425465597132446653114905059102580436018893]
> evaluate(f, [2,4]);
[0.45986058925497069206106494332976097408234056912429;1.207872105899641695959010
37621103012113048821362855]
> fprime = diff(f);
> L[1];
[2.53086745013099407167484456656211083053393118778677e-2;1.756802495307928251372
6390945118290941359128873365]
> evaluate(fprime,[2,4]);
[2.71048755415961996452136364304380881763456815673085e-2;1.109195306639432908373
9722578862353140555843127995]

Example 3:

> L = autodiff(sin(x)/x, 0, [-1,1]);
> L[0];
[-infty;infty]
> evaluate(sin(x)/x, [-1,1]);
[0.5403023058681397174009366074429766037323104206179;1]

See also: diff (8.41), evaluate (8.57)

8.16 autosimplify
Name: autosimplify

activates, deactivates or inspects the value of the automatic simplification state variable

Library names:
void sollya_lib_set_autosimplify_and_print(sollya_obj_t)
void sollya_lib_set_autosimplify(sollya_obj_t)
sollya_obj_t sollya_lib_get_autosimplify()

Usage:

autosimplify = activation value : on|off → void
autosimplify = activation value ! : on|off → void

autosimplify : on|off

Parameters:

∙ activation value represents on or off, i.e. activation or deactivation

Description:

∙ An assignment autosimplify = activation value, where activation value is one of on or off, acti-
vates respectively deactivates the automatic safe simplification of expressions of functions generated
by the evaluation of commands or in argument of other commands.
Sollya commands like remez, taylor or rationalapprox sometimes produce expressions that
can be simplified. Constant subexpressions can be evaluated to dyadic floating-point numbers,
monomials with coefficients 0 can be eliminated. Further, expressions indicated by the user perform
better in many commands when simplified before being passed in argument to a command. When
the automatic simplification of expressions is activated, Sollya automatically performs a safe (not
value changing) simplification process on such expressions.
The automatic generation of subexpressions can be annoying, in particular if it takes too much
time for not enough benefit. Further the user might want to inspect the structure of the expression
tree returned by a command. In this case, the automatic simplification should be deactivated.

51

If the assignment autosimplify = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

> autosimplify = on !;
> print(x - x);
0
> autosimplify = off ;
Automatic pure tree simplification has been deactivated.
> print(x - x);
x - x

Example 2:

> autosimplify = on !;
> print(rationalapprox(sin(pi/5.9),7));
33 / 65
> autosimplify = off !;
> print(rationalapprox(sin(pi/5.9),7));
33 / 65

See also: print (8.138), == (8.53), != (8.115), prec (8.135), points (8.130), diam (8.39), display
(8.46), verbosity (8.195), canonical (8.22), taylorrecursions (8.187), timing (8.190), fullparen-
theses (8.72), midpointmode (8.109), hopitalrecursions (8.84), remez (8.155), rationalapprox
(8.149), taylor (8.185)

8.17 bashevaluate
Name: bashevaluate

executes a shell command and returns its output as a string

Library names:
sollya_obj_t sollya_lib_bashevaluate(sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_bashevaluate(sollya_obj_t, va_list)

Usage:

bashevaluate(command) : string → string
bashevaluate(command,input) : (string, string) → string

Parameters:

∙ command is a command to be interpreted by the shell.

∙ input is an optional character sequence to be fed to the command.

Description:

∙ bashevaluate(command) will execute the shell command command in a shell. All output on the
command’s standard output is collected and returned as a character sequence.

∙ If an additional argument input is given in a call to bashevaluate(command,input), this character
sequence is written to the standard input of the command command that gets executed.

∙ All characters output by command are included in the character sequence to which bashevaluate
evaluates but two exceptions. Every NULL character (‘∖0’) in the output is replaced with ‘?’ as
Sollya is unable to handle character sequences containing that character. Additionally, if the
output ends in a newline character (‘∖n’), this character is stripped off. Other newline characters
which are not at the end of the output are left as such.

52

Example 1:

> bashevaluate("LANG=C date");
Thu Sep 20 12:14:35 CEST 2018

Example 2:

> [| bashevaluate("echo Hello") |];
[|"Hello"|]

Example 3:

> a = bashevaluate("sed -e ’s/a/e/g;’", "Hallo");
> a;
Hello

See also: bashexecute (8.18)

8.18 bashexecute
Name: bashexecute

executes a shell command.

Library name:
void sollya_lib_bashexecute(sollya_obj_t)

Usage:
bashexecute(command) : string → void

Parameters:
∙ command is a command to be interpreted by the shell.

Description:
∙ bashexecute(command) lets the shell interpret command. It is useful to execute some external

code within Sollya.

∙ bashexecute does not return anything. It just executes its argument. However, if command
produces an output in a file, this result can be imported in Sollya with help of commands like
execute, readfile and parse.

Example 1:

> bashexecute("LANG=C date");
Thu Sep 20 12:14:39 CEST 2018

See also: execute (8.58), readfile (8.152), parse (8.125), bashevaluate (8.17)

8.19 binary
Name: binary

special value for global state display

Library names:
sollya_obj_t sollya_lib_binary()
int sollya_lib_is_binary(sollya_obj_t)

Description:
∙ binary is a special value used for the global state display. If the global state display is equal to

binary, all data will be output in binary notation.
As any value it can be affected to a variable and stored in lists.

See also: decimal (8.35), dyadic (8.52), powers (8.134), hexadecimal (8.82), display (8.46)

53

8.20 bind
Name: bind

partially applies a procedure to an argument, returning a procedure with one argument less

Usage:

bind(proc, ident, obj) : (procedure, identifier type, any type) → procedure

Parameters:

∙ proc is a procedure to be partially applied to an argument

∙ ident is one of the formal arguments of proc

∙ obj is any Sollya object ident is to be bound to

Description:

∙ bind allows a formal parameter ident of a procedure proc to be bound to an object obj, hence proc to
be partially applied. The result of this curryfied application, returned by bind, is a procedure with
one argument less. This way, bind permits specialization of a generic procedure, parameterized
e.g. by a function or range.

∙ In the case when proc does not have a formal parameter named ident, bind prints a warning and
returns the procedure proc unmodified.

∙ bind always returns a procedure, even if proc only has one argument, which gets bound to ident.
In this case, bind returns a procedure which does not take any argument. Hence evaluation, which
might provoke side effects, is only performed once the procedure gets used.

∙ bind does not work on procedures with an arbitrary number of arguments.

Example 1:

> procedure add(X,Y) { return X + Y; };
> succ = bind(add,X,1);
> succ(5);
6
> succ;
proc(Y)
{
nop;
return (proc(X, Y)
{
nop;
return (X) + (Y);
})(1, Y);
}

Example 2:

54

> procedure add(X,Y) { return X + Y; };
> succ = bind(add,X,1);
> five = bind(succ,Y,4);
> five();
5
> five;
proc()
{
nop;
return (proc(Y)
{
nop;
return (proc(X, Y)
{
nop;
return (X) + (Y);
})(1, Y);
})(4);
}

Example 3:

> verbosity = 1!;
> procedure add(X,Y) { return X + Y; };
> foo = bind(add,R,1);
Warning: the given procedure has no argument named "R". The procedure is returne
d unchanged.
> foo;
proc(X, Y)
{
nop;
return (X) + (Y);
}

See also: procedure (8.144), proc (8.143), function (8.73), @ (8.28)

8.21 boolean
Name: boolean

keyword representing a boolean type

Library name:
SOLLYA_EXTERNALPROC_TYPE_BOOLEAN

Usage:

boolean : type type

Description:

∙ boolean represents the boolean type for declarations of external procedures by means of exter-
nalproc.
Remark that in contrast to other indicators, type indicators like boolean cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.64), constant (8.29), function (8.73), integer (8.92), list of (8.100), range
(8.148), string (8.176), object (8.120)

55

8.22 canonical
Name: canonical

brings all polynomial subexpressions of an expression to canonical form or activates, deactivates or
checks canonical form printing

Library names:
void sollya_lib_set_canonical_and_print(sollya_obj_t)
void sollya_lib_set_canonical(sollya_obj_t)
sollya_obj_t sollya_lib_canonical(sollya_obj_t)
sollya_obj_t sollya_lib_get_canonical()

Usage:

canonical(function) : function → function
canonical = activation value : on|off → void

canonical = activation value ! : on|off → void

Parameters:

∙ function represents the expression to be rewritten in canonical form

∙ activation value represents on or off, i.e. activation or deactivation

Description:

∙ The command canonical rewrites the expression representing the function function in a way such
that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written
in canonical form, i.e. as a sum of monomials in the canonical base. The canonical base is the
base of the integer powers of the global free variable. The command canonical does not endanger
the safety of computations even in Sollya’s floating-point environment: the function returned is
mathematically equal to the function function.

∙ An assignment canonical = activation value, where activation value is one of on or off, activates
respectively deactivates the automatic printing of polynomial expressions in canonical form, i.e. as
a sum of monomials in the canonical base. If automatic printing in canonical form is deactivated,
automatic printing yields to displaying polynomial subexpressions in Horner form.
If the assignment canonical = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

> print(canonical(1 + x * (x + 3 * x^2)));
1 + x^2 + 3 * x^3
> print(canonical((x + 1)^7));
1 + 7 * x + 21 * x^2 + 35 * x^3 + 35 * x^4 + 21 * x^5 + 7 * x^6 + x^7

Example 2:

> print(canonical(exp((x + 1)^5) - log(asin(((x + 2) + x)^4 * (x + 1)) + x)));
exp(1 + 5 * x + 10 * x^2 + 10 * x^3 + 5 * x^4 + x^5) - log(asin(16 + 80 * x + 16
0 * x^2 + 160 * x^3 + 80 * x^4 + 16 * x^5) + x)

Example 3:

56

> canonical;
off
> (x + 2)^9;
512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *
(144 + x * (18 + x))))))))

> canonical = on;
Canonical automatic printing output has been activated.
> (x + 2)^9;
512 + 2304 * x + 4608 * x^2 + 5376 * x^3 + 4032 * x^4 + 2016 * x^5 + 672 * x^6 +
144 * x^7 + 18 * x^8 + x^9

> canonical;
on
> canonical = off!;
> (x + 2)^9;
512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *
(144 + x * (18 + x))))))))

See also: horner (8.85), print (8.138), autosimplify (8.16)

8.23 ceil
Name: ceil

the usual function ceil.

Library names:
sollya_obj_t sollya_lib_ceil(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_ceil(sollya_obj_t)
#define SOLLYA_CEIL(x) sollya_lib_build_function_ceil(x)

Description:

∙ ceil is defined as usual: ceil(𝑥) is the smallest integer 𝑦 such that 𝑦 ≥ 𝑥.

∙ It is defined for every real number 𝑥.

See also: floor (8.70), nearestint (8.114), round (8.161), RU (8.165)

8.24 chebyshevform
Name: chebyshevform

computes a rigorous polynomial approximation

Library name:
sollya_obj_t sollya_lib_chebyshevform(sollya_obj_t, sollya_obj_t,

sollya_obj_t);

Usage:

chebyshevform(f, n, I) : (function, integer, range) → list

Parameters:

∙ f is the function to be approximated.

∙ n is the degree of the polynomial that must approximate f.

∙ I is the interval over which the function is to be approximated. This interval cannot be a point
interval, i.e. its endpoints have to be different.

Description:

57

∙ WARNING: chebyshevform is a certified command, not difficult to use but not completely
straightforward to use either. In order to be sure to use it correctly, the reader is invited to
carefully read this documentation entirely.

∙ chebyshevform computes an approximation polynomial and an interval error bound for a given
function 𝑓 .
More precisely, it returns a list 𝐿 = [𝑝, coeffErrors, Δ, chebCoeffs] where:

– 𝑝 is an approximation polynomial of degree 𝑛 which is roughly speaking a numerical Chebyshev
interpolation polynomial of 𝑓 over 𝐼 represented in monomial basis.

– coeffsErrors is a list of 𝑛 + 1 intervals. Each interval coeffsErrors[𝑖] contains an enclosure of
all the errors accumulated when computing the 𝑖-th coefficient of 𝑝.

– Δ is an interval that provides a bound for the approximation error between 𝑝 and 𝑓 . See
details below.

– chebCoeffs is a list of 𝑛 + 1 intervals. These are the interval coefficients obtained for the
representation of interpolation polynomial considered in Chebyshev basis. See details below.

∙ The polynomial 𝑝 and the bound Δ are obtained using Chebyshev Models principles.

∙ More formally, the mathematical property ensured by the algorithm may be stated as follows:
Using monomial basis representation given by 𝑝: there exist (small) values 𝜀𝑖 ∈ coeffsErrors[𝑖] such
that: ∀𝑥 ∈ 𝐼, ∃𝛿 ∈ Δ, 𝑓(𝑥) − 𝑝(𝑥) =

𝑛∑︀
𝑖=0

𝜀𝑖 𝑥𝑖 + 𝛿.

Using Chebyshev basis representation given by chebCoeffs: there exist values 𝛼𝑖 ∈ chebCoeffs[𝑖]
such that: ∀𝑥 ∈ 𝐼, ∃𝛿 ∈ Δ, 𝑓(𝑥) −

𝑛∑︀
𝑖=0

𝛼𝑖 𝑇𝑖(𝑦) = 𝛿, where [𝑎, 𝑏] = 𝐼, 𝑦 = (2𝑥 − 𝑏 − 𝑎)/(𝑏 − 𝑎) and

𝑇𝑖(𝑦) is the 𝑖-th Chebyshev polynomial over [−1, 1].

∙ The algorithm does not guarantee that by increasing the degree of the approximation, the re-
mainder bound will become smaller. Moreover, it may even become larger due to the dependency
phenomenon present with interval arithmetic. In order to reduce this phenomenon, a possible
solution is to split the definition domain 𝐼 into several smaller intervals.

Example 1:

> TL=chebyshevform(exp(x), 10, [-1,1]);
> p=TL[0];
> Delta=TL[2];
> p; Delta;
1.0017 + x * (1.000000000273898191
9773953471453626764777115166417 + x * (0.500000000022767543680233268825420973654
11870042312 + x * (0.166666661190450656168988993421371510533693281444003 + x * (
4.1666666211440433973188799509591566161569698904644e-2 + x * (8.3333639749825520
034240517636254576844423981913793e-3 + x * (1.3888914363614809070686210553721677
7944219976325265e-3 + x * (1.98342776066472142284727329700227389403558111865906e
-4 + x * (2.47957727598277888282218067965324267955768146489014e-5 + x * (2.82540
33440982477266316370012542019511804700836066e-6 + x * 2.813698333371884313582809
1163040197490633045592362e-7)))))))))
[-2.71406412827174505775085010461449926572460824320373e-11;2.7140641282717450577
5085010461449926572460824320373e-11]

See also: taylorform (8.186), diff (8.41), autodiff (8.15), taylor (8.185), remez (8.155)

8.25 checkinfnorm
Name: checkinfnorm

checks whether the infinity norm of a function is bounded by a value

58

Library name:
sollya_obj_t sollya_lib_checkinfnorm(sollya_obj_t, sollya_obj_t,

sollya_obj_t)

Usage:

checkinfnorm(function,range,constant) : (function, range, constant) → boolean

Parameters:

∙ function represents the function whose infinity norm is to be checked

∙ range represents the infinity norm is to be considered on

∙ constant represents the upper bound the infinity norm is to be checked to

Description:

∙ The command checkinfnorm checks whether the infinity norm of the given function function in
the range range can be proven (by Sollya) to be less than the given bound bound. This means, if
checkinfnorm evaluates to true, the infinity norm has been proven (by Sollya’s interval arith-
metic) to be less than the bound. If checkinfnorm evaluates to false, there are two possibilities:
either the bound is less than or equal to the infinity norm of the function or the bound is greater
than the infinity norm but Sollya could not conclude using its internal interval arithmetic.
checkinfnorm is sensitive to the global variable diam. The smaller diam, the more time Sollya
will spend on the evaluation of checkinfnorm in order to prove the bound before returning false
although the infinity norm is bounded by the bound. If diam is equal to 0, Sollya will eventually
spend infinite time on instances where the given bound bound is less or equal to the infinity norm of
the function function in range range. In contrast, with diam being zero, checkinfnorm evaluates
to true iff the infinity norm of the function in the range is bounded by the given bound.

Example 1:

> checkinfnorm(sin(x),[0;1.75], 1);
true
> checkinfnorm(sin(x),[0;1.75], 1/2); checkinfnorm(sin(x),[0;20/39],1/2);
false
true

Example 2:

> p = remez(exp(x), 5, [-1;1]);
> b = dirtyinfnorm(p - exp(x), [-1;1]);
> checkinfnorm(p - exp(x), [-1;1], b);
false
> b1 = round(b, 15, RU);
> checkinfnorm(p - exp(x), [-1;1], b1);
true
> b2 = round(b, 25, RU);
> checkinfnorm(p - exp(x), [-1;1], b2);
false
> diam = 1b-20!;
> checkinfnorm(p - exp(x), [-1;1], b2);
true

See also: infnorm (8.91), dirtyinfnorm (8.43), supnorm (8.180), accurateinfnorm (8.3), remez
(8.155), diam (8.39)

59

8.26 coeff
Name: coeff

gives the coefficient of degree 𝑛 of a polynomial

Library name:
sollya_obj_t sollya_lib_coeff(sollya_obj_t, sollya_obj_t)

Usage:

coeff(f,n) : (function, integer) → constant

Parameters:

∙ f is a function (usually a polynomial).

∙ n is an integer

Description:

∙ If f is a polynomial, coeff(f, n) returns the coefficient of degree n in f.

∙ If f is a function that is not a polynomial, coeff(f, n) returns 0.

Example 1:

> coeff((1+x)^5,3);
10

Example 2:

> coeff(sin(x),0);
0

See also: degree (8.37), roundcoefficients (8.162), subpoly (8.177)

8.27 composepolynomials
Name: composepolynomials

computes an approximation to the composition of two polynomials and bounds the error

Library name:
sollya_obj_t sollya_lib_composepolynomials(sollya_obj_t, sollya_obj_t)

Usage:

composepolynomials(p,q) : (function, function) → structure

Parameters:

∙ p and q are polynomials

Description:

∙ Given two polynomials 𝑝 and 𝑞, composepolynomials(p, q) computes an approximation 𝑟 to the
polynomial (𝑝 ∘ 𝑞) and bounds the error polynomial 𝑟 − (𝑝 ∘ 𝑞) using interval arithmetic.

∙ composepolynomials always returns a structure containing two elements, poly and radii. The
element poly is contains the approximate composed polynomial 𝑟. The element radii contains
a list of 𝑛 + 1 intervals 𝑎𝑖 bounding the coefficients of the error polynomial, which is of the same
degree 𝑛 as is the composed polynomial (𝑝 ∘ 𝑞). This is, there exist 𝛼𝑖 ∈ 𝑎𝑖 such that

𝑛∑︁
𝑖=0

𝛼𝑖 𝑥𝑖 = 𝑟(𝑥) − (𝑝 ∘ 𝑞)(𝑥).

60

∙ In the case when either of 𝑝 or 𝑞 is not a polynomial, composepolynomials behaves like sub-
stitute used in a literate structure. The list of intervals bounding the coefficients of the error
polynomial is returned empty.

Example 1:

> composepolynomials(1 + 2 * x + 3 * x^2 + 4 * x^3, 5 + 6 * x + 7 * x^2);
{ .radii = [|[0;0], [0;0], [0;0], [0;0], [0;0], [0;0], [0;0]|], .poly = 586 + x
* (1992 + x * (4592 + x * (6156 + x * (6111 + x * (3528 + x * 1372))))) }

Example 2:

> print(composepolynomials(1/5 * x + exp(17) + log(2) * x^2, x^4 + 1/3 * x^2));
{ .radii = [|[-3.5873240686715317015647477332221852960774705712039e-43;3.5873240
686715317015647477332221852960774705712039e-43], [0;0], [-2.67276471009219564614
053646715148187881519688010505e-51;2.6727647100921956461405364671514818788151968
8010505e-51], [0;0], [-1.06910588403687825845621458686059275152607875204202e-50;
1.06910588403687825845621458686059275152607875204202e-50], [0;0], [-2.1382117680
7375651691242917372118550305215750408404e-50;2.138211768073756516912429173721185
50305215750408404e-50], [0;0], [-1.069105884036878258456214586860592751526078752
04202e-50;1.06910588403687825845621458686059275152607875204202e-50]|], .poly = 2
.41549527535752982147754351803858238798675673527228e7 + x^2 * (6.666666666666666
6666666666666666666666666666666666e-2 + x^2 * (0.2770163533955494788241369023842
418408972777927067 + x^2 * (0.46209812037329687294482141430545104538366675624017
+ x^2 * 0.69314718055994530941723212145817656807550013436026))) }

Example 3:

> composepolynomials(sin(x),x + x^2);
{ .radii = [| |], .poly = sin(x * (1 + x)) }

See also: substitute (8.178)

8.28 @
Name: @

concatenates two lists or strings or applies a list as arguments to a procedure

Library name:
sollya_obj_t sollya_lib_concat(sollya_obj_t, sollya_obj_t)

Usage:

L1@L2 : (list, list) → list
string1@string2 : (string, string) → string

proc@L1 : (procedure, list) → any type

Parameters:

∙ L1 and L2 are two lists.

∙ string1 and string2 are two strings.

∙ proc is a procedure or an external procedure.

Description:

∙ In its first usage form, @ concatenates two lists or strings.

61

∙ In its second usage form, @ applies the elements of a list as arguments to a procedure or an
external procedure. In the case when proc is a procedure or external procedure with a fixed
number of arguments, a check is done if the number of elements in the list corresponds to the
number of formal parameters of proc. An empty list can therefore be applied only to a procedure
that does not take any argument. In the case when proc accepts an arbitrary number of arguments,
no such check is performed.

Example 1:

> [|1,...,3|]@[|7,8,9|];
[|1, 2, 3, 7, 8, 9|]

Example 2:

> "Hello "@"World!";
Hello World!

Example 3:

> procedure cool(a,b,c) {
write(a,", ", b," and ",c," are cool guys.\n");
};

> cool @ [| "Christoph", "Mioara", "Sylvain" |];
Christoph, Mioara and Sylvain are cool guys.

Example 4:

> procedure sayhello() {
"Hello! how are you?";
};

> sayhello();
Hello! how are you?
> sayhello @ [||];
Hello! how are you?

Example 5:

> bashexecute("gcc -fPIC -Wall -c externalprocexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocexample externalprocexample.o");

> externalproc(foo, "./externalprocexample", (integer, integer) -> integer);
> foo;
foo
> foo @ [|5, 6|];
11

Example 6:

62

> procedure add(L = ...) {
var acc, i;
acc = 0;
for i in L do acc = i + acc;
return acc;
};

> add(1,2);
3
> add(1,2,3);
6
> add @ [|1, 2|];
3
> add @ [|1, 2, 3|];
6
> add @ [||];
0

See also: .: (8.137), :. (8.8), procedure (8.144), externalproc (8.64), proc (8.143), bind (8.20),
getbacktrace (8.76)

8.29 constant
Name: constant

keyword representing a constant type

Library name:
SOLLYA_EXTERNALPROC_TYPE_CONSTANT

Usage:

constant : type type

Description:

∙ constant represents the constant type for declarations of external procedures externalproc.
Remark that in contrast to other indicators, type indicators like constant cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.64), boolean (8.21), function (8.73), integer (8.92), list of (8.100), range
(8.148), string (8.176), object (8.120)

8.30 cos
Name: cos

the cosine function.

Library names:
sollya_obj_t sollya_lib_cos(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_cos(sollya_obj_t)
#define SOLLYA_COS(x) sollya_lib_build_function_cos(x)

Description:

∙ cos is the usual cosine function.

∙ It is defined for every real number 𝑥.

See also: acos (8.4), sin (8.171), tan (8.183)

63

8.31 cosh
Name: cosh

the hyperbolic cosine function.

Library names:
sollya_obj_t sollya_lib_cosh(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_cosh(sollya_obj_t)
#define SOLLYA_COSH(x) sollya_lib_build_function_cosh(x)

Description:

∙ cosh is the usual hyperbolic function: cosh(𝑥) = 𝑒𝑥+𝑒−𝑥

2 .

∙ It is defined for every real number 𝑥.

See also: acosh (8.5), sinh (8.173), tanh (8.184), exp (8.59)

8.32 D
Name: D

short form for double

See also: double (8.49)

8.33 DD
Name: DD

short form for doubledouble

See also: doubledouble (8.50)

8.34 DE
Name: DE

short form for doubleextended

See also: doubleextended (8.51)

8.35 decimal
Name: decimal

special value for global state display

Library names:
sollya_obj_t sollya_lib_decimal()
int sollya_lib_is_decimal(sollya_obj_t)

Description:

∙ decimal is a special value used for the global state display. If the global state display is equal
to decimal, all data will be output in decimal notation.
As any value it can be affected to a variable and stored in lists.

See also: dyadic (8.52), powers (8.134), hexadecimal (8.82), binary (8.19), display (8.46)

8.36 default
Name: default

default value for some commands.

Library names:

64

sollya_obj_t sollya_lib_default()
int sollya_lib_is_default(sollya_obj_t)

Description:

∙ default is a special value and is replaced by something depending on the context where it is used.
It can often be used as a joker, when you want to specify one of the optional parameters of a
command and not the others: set the value of uninteresting parameters to default.

∙ Global variables can be reset by affecting them the special value default.

Example 1:

> p = remez(exp(x),5,[0;1],default,1e-5);
> q = remez(exp(x),5,[0;1],1,1e-5);
> p==q;
true

Example 2:

> prec;
165
> prec=200;
The precision has been set to 200 bits.

8.37 degree
Name: degree

gives the degree of a polynomial.

Library name:
sollya_obj_t sollya_lib_degree(sollya_obj_t)

Usage:

degree(f) : function → integer

Parameters:

∙ f is a function (usually a polynomial).

Description:

∙ If f is a polynomial, degree(f) returns the degree of f.

∙ Contrary to the usage, Sollya considers that the degree of the null polynomial is 0.

∙ If f is a function that is not a polynomial, degree(f) returns -1.

Example 1:

> degree((1+x)*(2+5*x^2));
3
> degree(0);
0

Example 2:

> degree(sin(x));
-1

See also: coeff (8.26), subpoly (8.177), roundcoefficients (8.162)

65

8.38 denominator
Name: denominator

gives the denominator of an expression

Library name:
sollya_obj_t sollya_lib_denominator(sollya_obj_t)

Usage:

denominator(expr) : function → function

Parameters:

∙ expr represents an expression

Description:

∙ If expr represents a fraction expr1/expr2, denominator(expr) returns the denominator of this
fraction, i.e. expr2.
If expr represents something else, denominator(expr) returns 1.
Note that for all expressions expr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> denominator(5/3);
3

Example 2:

> denominator(exp(x));
1

Example 3:

> a = 5/3;
> b = numerator(a)/denominator(a);
> print(a);
5 / 3
> print(b);
5 / 3

Example 4:

> a = exp(x/3);
> b = numerator(a)/denominator(a);
> print(a);
exp(x / 3)
> print(b);
exp(x / 3)

See also: numerator (8.119), rationalmode (8.150)

8.39 diam
Name: diam

parameter used in safe algorithms of Sollya and controlling the maximal length of the involved
intervals.

Library names:
void sollya_lib_set_diam_and_print(sollya_obj_t)

66

void sollya_lib_set_diam(sollya_obj_t)
sollya_obj_t sollya_lib_get_diam()

Usage:
diam = width : constant → void

diam = width ! : constant → void
diam : constant

Parameters:
∙ width represents the maximal relative width of the intervals used

Description:
∙ diam is a global variable. Its value represents the maximal width allowed for intervals involved

in safe algorithms of Sollya (namely infnorm, checkinfnorm, accurateinfnorm, integral,
findzeros, supnorm).

∙ More precisely, diam is relative to the width of the input interval of the command. For instance,
suppose that diam=1e-5: if infnorm is called on interval [0, 1], the maximal width of an interval
will be 1e-5. But if it is called on interval [0, 1e−3], the maximal width will be 1e-8.

See also: infnorm (8.91), checkinfnorm (8.25), accurateinfnorm (8.3), integral (8.93), findzeros
(8.67), supnorm (8.180)

8.40 dieonerrormode
Name: dieonerrormode

global variable controlling if Sollya is exited on an error or not.

Library names:
void sollya_lib_set_dieonerrormode_and_print(sollya_obj_t)
void sollya_lib_set_dieonerrormode(sollya_obj_t)
sollya_obj_t sollya_lib_get_dieonerrormode()

Usage:
dieonerrormode = activation value : on|off → void

dieonerrormode = activation value ! : on|off → void
dieonerrormode : on|off

Parameters:
∙ activation value controls if Sollya is exited on an error or not.

Description:
∙ dieonerrormode is a global variable. When its value is off, which is the default, Sollya will not

exit on any syntax, typing, side-effect errors. These errors will be caught by the tool, even if a
memory might be leaked at that point. On evaluation, the error special value will be produced.

∙ When the value of the dieonerrormode variable is on, Sollya will exit on any syntax, typing,
side-effect errors. A warning message will be printed in these cases at appropriate verbosity levels.

Example 1:

> verbosity = 1!;
> dieonerrormode = off;
Die-on-error mode has been deactivated.
> for i from true to false do i + "Salut";
Warning: one of the arguments of the for loop does not evaluate to a constant.
The for loop will not be executed.
> exp(17);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
2.41549527535752982147754351803858238798675673527224e7

67

Example 2:

> verbosity = 1!;
> dieonerrormode = off!;
> 5 */ 4;
Warning: syntax error, unexpected /.
The last symbol read has been "/".
Will skip input until next semicolon after the unexpected token. May leak memory
.

exp(17);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
2.41549527535752982147754351803858238798675673527224e7

Example 3:

> verbosity = 1!;
> dieonerrormode;
off
> dieonerrormode = on!;
> dieonerrormode;
on
> for i from true to false do i + "Salut";
Warning: one of the arguments of the for loop does not evaluate to a constant.
The for loop will not be executed.
Warning: some syntax, typing or side-effect error has occurred.
As the die-on-error mode is activated, the tool will be exited.

Example 4:

> verbosity = 1!;
> dieonerrormode = on!;
> 5 */ 4;
Warning: syntax error, unexpected /.
The last symbol read has been "/".
Will skip input until next semicolon after the unexpected token. May leak memory
.
Warning: some syntax, typing or side-effect error has occurred.
As the die-on-error mode is activated, the tool will be exited.

Example 5:

> verbosity = 0!;
> dieonerrormode = on!;
> 5 */ 4;

See also: on (8.123), off (8.122), verbosity (8.195), error (8.56)

8.41 diff
Name: diff

differentiation operator

Library name:
sollya_obj_t sollya_lib_diff(sollya_obj_t)

Usage:

diff(function) : function → function

68

Parameters:

∙ function represents a function

Description:

∙ diff(function) returns the symbolic derivative of the function function by the global free variable.
If function represents a function symbol that is externally bound to some code by library, the
derivative is performed as a symbolic annotation to the returned expression tree.

Example 1:

> diff(sin(x));
cos(x)

Example 2:

> diff(x);
1

Example 3:

> diff(x^x);
x^x * (1 + log(x))

See also: library (8.98), autodiff (8.15), taylor (8.185), taylorform (8.186)

8.42 dirtyfindzeros
Name: dirtyfindzeros

gives a list of numerical values listing the zeros of a function on an interval.

Library name:
sollya_obj_t sollya_lib_dirtyfindzeros(sollya_obj_t, sollya_obj_t)

Usage:

dirtyfindzeros(f,I) : (function, range) → list

Parameters:

∙ f is a function.

∙ I is an interval.

Description:

∙ dirtyfindzeros(f,I) returns a list containing some zeros of f in the interval I. The values in the
list are numerical approximation of the exact zeros. The precision of these approximations is
approximately the precision stored in prec. If f does not have two zeros very close to each other,
it can be expected that all zeros are listed. However, some zeros may be forgotten. This command
should be considered as a numerical algorithm and should not be used if safety is critical.

∙ More precisely, the algorithm relies on global variables prec and points and it performs the
following steps: let 𝑛 be the value of variable points and 𝑡 be the value of variable prec.

– Evaluate |𝑓 | at 𝑛 evenly distributed points in the interval 𝐼. The working precision to be used
is automatically chosen in order to ensure that the sign is correct.

– Whenever 𝑓 changes its sign for two consecutive points, find an approximation 𝑥 of its zero
with precision 𝑡 using Newton’s algorithm. The number of steps in Newton’s iteration depends
on 𝑡: the precision of the approximation is supposed to be doubled at each step.

69

– Add this value to the list.

∙ The user should be aware that the list returned by dirtyfindzeros may contain a certain floating-
point number twice. These repetitions reflect the existence of different zeros of the function the
value of which rounds to the same floating-point number in the current working precision. In this
case, increasing the working precision will end up making the two zeros distinguishable even in
rounded floating-point arithmetic.

Example 1:

> dirtyfindzeros(sin(x),[-5;5]);
[|-3.1415926535897932384626433832795028841971693993751, 0, 3.1415926535897932384
626433832795028841971693993751|]

Example 2:

> L1=dirtyfindzeros(x^2*sin(1/x),[0;1]);
> points=1000!;
> L2=dirtyfindzeros(x^2*sin(1/x),[0;1]);
> length(L1); length(L2);
18
25

See also: prec (8.135), points (8.130), findzeros (8.67), dirtyinfnorm (8.43), numberroots (8.118)

8.43 dirtyinfnorm
Name: dirtyinfnorm

computes a numerical approximation of the infinity norm of a function on an interval.

Library name:
sollya_obj_t sollya_lib_dirtyinfnorm(sollya_obj_t, sollya_obj_t)

Usage:

dirtyinfnorm(f,I) : (function, range) → constant

Parameters:

∙ f is a function.

∙ I is an interval.

Description:

∙ dirtyinfnorm(f,I) computes an approximation of the infinity norm of the given function 𝑓 on the
interval 𝐼, e.g. max𝑥∈𝐼{|𝑓(𝑥)|}.

∙ The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyinfnorm
is NaN.

∙ The result of this command depends on the global variables prec and points. Therefore, the
returned result is generally a good approximation of the exact infinity norm, with precision prec.
However, the result is generally underestimated and should not be used when safety is critical. Use
infnorm instead.

∙ The following algorithm is used: let 𝑛 be the value of variable points and 𝑡 be the value of variable
prec.

– Evaluate |𝑓 | at 𝑛 evenly distributed points in the interval 𝐼. The evaluation are faithful
roundings of the exact results at precision 𝑡.

70

– Whenever the derivative of 𝑓 changes its sign for two consecutive points, find an approximation
𝑥 of its zero with precision 𝑡. Then compute a faithful rounding of |𝑓(𝑥)| at precision 𝑡.

– Return the maximum of all computed values.

Example 1:

> dirtyinfnorm(sin(x),[-10;10]);
1

Example 2:

> prec=15!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.45856
> prec=40!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136
> prec=100!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136237644438147455025
> prec=200!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136237644438147455023841718299214087993682374094153

Example 3:

> dirtyinfnorm(x^2, [log(0);log(1)]);
NaN

See also: prec (8.135), points (8.130), infnorm (8.91), checkinfnorm (8.25), supnorm (8.180)

8.44 dirtyintegral
Name: dirtyintegral

computes a numerical approximation of the integral of a function on an interval.

Library name:
sollya_obj_t sollya_lib_dirtyintegral(sollya_obj_t, sollya_obj_t)

Usage:

dirtyintegral(f,I) : (function, range) → constant

Parameters:

∙ f is a function.

∙ I is an interval.

Description:

∙ dirtyintegral(f,I) computes an approximation of the integral of f on I.

∙ The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyintegral
is NaN, even if the integral has a meaning.

∙ The result of this command depends on the global variables prec and points. The method used
is the trapezium rule applied at 𝑛 evenly distributed points in the interval, where 𝑛 is the value of
global variable points.

∙ This command computes a numerical approximation of the exact value of the integral. It should
not be used if safety is critical. In this case, use command integral instead.

71

∙ Warning: this command is currently known to be unsatisfactory. If you really need to compute
integrals, think of using another tool or report a feature request to sylvain.chevillard@ens-lyon.org.

Example 1:

> sin(10);
-0.54402111088936981340474766185137728168364301291622
> dirtyintegral(cos(x),[0;10]);
-0.54400304905152629822448058882475382036536298356282
> points=2000!;
> dirtyintegral(cos(x),[0;10]);
-0.54401997751158321972222697312583199035995837926893

See also: prec (8.135), points (8.130), integral (8.93)

8.45 dirtysimplify
Name: dirtysimplify

simplifies an expression representing a function

Library name:
sollya_obj_t sollya_lib_dirtysimplify(sollya_obj_t)

Usage:

dirtysimplify(function) : function → function

Parameters:

∙ function represents the expression to be simplified

Description:

∙ The command dirtysimplify simplifies constant subexpressions of the expression given in ar-
gument representing the function function. Those constant subexpressions are evaluated using
floating-point arithmetic with the global precision prec.

Example 1:

> print(dirtysimplify(sin(pi * x)));
sin(3.1415926535897932384626433832795028841971693993751 * x)
> print(dirtysimplify(erf(exp(3) + x * log(4))));
erf(20.0855369231876677409285296545817178969879078385544 + x * 1.386294361119890
6188344642429163531361510002687205)

Example 2:

> prec = 20!;
> t = erf(0.5);
> s = dirtysimplify(erf(0.5));
> prec = 200!;
> t;
0.520499877813046537682746653891964528736451575757963700058806
> s;
0.52050018310546875

See also: simplify (8.170), autosimplify (8.16), prec (8.135), evaluate (8.57), horner (8.85), ratio-
nalmode (8.150)

72

8.46 display
Name: display

sets or inspects the global variable specifying number notation

Library names:
void sollya_lib_set_display_and_print(sollya_obj_t)
void sollya_lib_set_display(sollya_obj_t)
sollya_obj_t sollya_lib_get_display()

Usage:

display = notation value : decimal|binary|dyadic|powers|hexadecimal → void
display = notation value ! : decimal|binary|dyadic|powers|hexadecimal → void

display : decimal|binary|dyadic|powers|hexadecimal

Parameters:

∙ notation value represents a variable of type decimal|binary|dyadic|powers|hexadecimal

Description:

∙ An assignment display = notation value, where notation value is one of decimal, dyadic, powers,
binary or hexadecimal, activates the corresponding notation for output of values in print, write
or at the Sollya prompt.
If the global notation variable display is decimal, all numbers will be output in scientific decimal
notation. If the global notation variable display is dyadic, all numbers will be output as dyadic
numbers with Gappa notation. If the global notation variable display is powers, all numbers will
be output as dyadic numbers with a notation compatible with Maple and PARI/GP. If the global
notation variable display is binary, all numbers will be output in binary notation. If the global
notation variable display is hexadecimal, all numbers will be output in C99/ IEEE754-2008
notation. All output notations can be parsed back by Sollya, inducing no error if the input and
output precisions are the same (see prec).
If the assignment display = notation value is followed by an exclamation mark, no message indi-
cating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

73

> display = decimal;
Display mode is decimal numbers.
> a = evaluate(sin(pi * x), 0.25);
> a;
0.70710678118654752440084436210484903928483593768847
> display = binary;
Display mode is binary numbers.
> a;
1.011010100000100111100110011001111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 2^(-1)
> display = hexadecimal;
Display mode is hexadecimal numbers.
> a;
0x1.6a09e667f3bcc908b2fb1366ea957d3e3adec1751p-1
> display = dyadic;
Display mode is dyadic numbers.
> a;
33070006991101558613323983488220944360067107133265b-165
> display = powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> a;
33070006991101558613323983488220944360067107133265 * 2^(-165)

See also: print (8.138), write (8.198), decimal (8.35), dyadic (8.52), powers (8.134), binary (8.19),
hexadecimal (8.82), prec (8.135)

8.47 div
Name: div

Computes the euclidian division of polynomials or numbers and returns the quotient

Library name:
sollya_obj_t sollya_lib_euclidian_div(sollya_obj_t, sollya_obj_t)

Usage:

div(a, b) : (function, function) → function

Parameters:

∙ a is a constant or a polynomial.

∙ b is a constant or a polynomial.

Description:

∙ When both a and b are constants, div(a,b) computes floor(a / b). In other words, it returns the
quotient of the Euclidian division of a by b.

∙ When both a and b are polynomials with at least one being non-constant, div(a,b) computes a
polynomial q such that the polynomial r equal to 𝑎−𝑞𝑏 is of degree strictly smaller than the degree
of b (see exception below). In order to recover r, use the mod command.

∙ div works on polynomials whose coefficients are constant expressions that cannot be simplified (by
the tool) to rational numbers. In most cases, the tool is able to perform the Euclidian polynomial
division for such polynomials and stop the Euclidian division algorithm only when r is of degree
strictly smaller than the degree of b. In certain cases, when the polynomials involve coefficients
given as constant expressions that are mathematically zero but for which the tool is unable to
detect this fact, the tool may be unable to correctly determine that r is actually of degree stricly

74

smaller than the degree of b. The issue arises in particular for polynomials whose leading coefficient
is a constant expression which is zero without the tool being able to detect this. In these cases,
div, together with mod, just guarantee that q and r, as returned by the two commands, satisfy
that r added to the product of q and b yields a, and that r is of the smallest degree the tool can
admit. However, there might exist another pair of a quotient and remainder polynomial for which
the remainder polynomial is of a degree less than the one of r.

∙ When at least one of a or b is a function that is no polynomial, div(a,b) returns 0.

Example 1:

> div(1001, 231);
4
> div(13, 17);
0
> div(-14, 15);
-1
> div(-213, -5);
42
> div(23/13, 11/17);
2
> div(exp(13),-sin(17));
460177

Example 2:

> div(24 + 68 * x + 74 * x^2 + 39 * x^3 + 10 * x^4 + x^5, 4 + 4 * x + x^2);
6 + x * (11 + x * (6 + x))
> div(24 + 68 * x + 74 * x^2 + 39 * x^3 + 10 * x^4 + x^5, 2 * x^3);
19.5 + x * (5 + x * 0.5)
> div(x^2, x^3);
0

Example 3:

> div(exp(x), x^2);
0

See also: gcd (8.74), mod (8.112), numberroots (8.118)

8.48 /
Name: /

division function

Library names:
sollya_obj_t sollya_lib_div(sollya_obj_t, sollya_obj_t)
sollya_obj_t sollya_lib_build_function_div(sollya_obj_t, sollya_obj_t)
#define SOLLYA_DIV(x,y) sollya_lib_build_function_div((x), (y))

Usage:

function1 / function2 : (function, function) → function
interval1 / interval2 : (range, range) → range

interval1 / constant : (range, constant) → range
interval1 / constant : (constant, range) → range

Parameters:

∙ function1 and function2 represent functions

75

∙ interval1 and interval2 represent intervals (ranges)

∙ constant represents a constant or constant expression

Description:

∙ / represents the division (function) on reals. The expression function1 / function2 stands for the
function composed of the division function and the two functions function1 and function2, where
function1 is the numerator and function2 the denominator.

∙ / can be used for interval arithmetic on intervals (ranges). / will evaluate to an interval that safely
encompasses all images of the division function with arguments varying in the given intervals. If
the intervals given contain points where the division function is not defined, infinities and NaNs will
be produced in the output interval. Any combination of intervals with intervals or constants (resp.
constant expressions) is supported. However, it is not possible to represent families of functions
using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

> 5 / 2;
2.5

Example 2:

> x / 2;
x * 0.5

Example 3:

> x / x;
1

Example 4:

> 3 / 0;
NaN

Example 5:

> diff(sin(x) / exp(x));
(exp(x) * cos(x) - sin(x) * exp(x)) / exp(x)^2

Example 6:

> [1;2] / [3;4];
[0.25;0.6668]
> [1;2] / 17;
[5.8823529411764705882352941176470588235294117647059e-2;0.1176470588235294117647
0588235294117647058823529412]
> -13 / [4;17];
[-3.25;-0.76470588235294117647058823529411764705882352941175]

See also: + (8.129), − (8.111), * (8.113), ^ (8.133)

76

8.49 double
Names: double, D

rounding to the nearest IEEE 754 double (binary64).

Library names:
sollya_obj_t sollya_lib_double(sollya_obj_t)
sollya_obj_t sollya_lib_double_obj()
int sollya_lib_is_double_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_double(sollya_obj_t)
#define SOLLYA_D(x) sollya_lib_build_function_double(x)

Description:

∙ double is both a function and a constant.

∙ As a function, it rounds its argument to the nearest IEEE 754 double precision (i.e. IEEE754-2008
binary64) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

∙ As a constant, it symbolizes the double precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round, roundcoefficients and implementpoly. See
the corresponding help pages for examples.

Example 1:

> display=binary!;
> D(0.1);
1.100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> D(4.17);
1.000010101110000101000111101011100001010001111010111_2 * 2^(2)
> D(1.011_2 * 2^(-1073));
1.1_2 * 2^(-1073)

See also: halfprecision (8.80), single (8.172), doubleextended (8.51), doubledouble (8.50), quad
(8.146), tripledouble (8.191), roundcoefficients (8.162), implementpoly (8.88), round (8.161),
printdouble (8.139)

8.50 doubledouble
Names: doubledouble, DD

represents a number as the sum of two IEEE doubles.

Library names:
sollya_obj_t sollya_lib_double_double(sollya_obj_t)
sollya_obj_t sollya_lib_double_double_obj()
int sollya_lib_is_double_double_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_double_double(sollya_obj_t)
#define SOLLYA_DD(x) sollya_lib_build_function_double_double(x)

Description:

∙ doubledouble is both a function and a constant.

∙ As a function, it rounds its argument to the nearest number that can be written as the sum of two
double precision numbers.

∙ The algorithm used to compute doubledouble(𝑥) is the following: let 𝑥ℎ = double(𝑥) and let 𝑥𝑙

= double(𝑥 − 𝑥ℎ). Return the number 𝑥ℎ + 𝑥𝑙. Note that if the current precision is not sufficient
to exactly represent 𝑥ℎ + 𝑥𝑙, a rounding will occur and the result of doubledouble(𝑥) will be
useless.

77

∙ As a constant, it symbolizes the double-double precision format. It is used in contexts when a pre-
cision format is necessary, e.g. in the commands round, roundcoefficients and implementpoly.
See the corresponding help pages for examples.

Example 1:

> verbosity=1!;
> a = 1+ 2^(-100);
> DD(a);
1.0000000000000000000000000000007888609052210118054
> prec=50!;
> DD(a);
1.000000000000000000000000000000788860905

See also: halfprecision (8.80), single (8.172), double (8.49), doubleextended (8.51), quad (8.146),
tripledouble (8.191), roundcoefficients (8.162), implementpoly (8.88), round (8.161)

8.51 doubleextended
Names: doubleextended, DE

computes the nearest number with 64 bits of mantissa.

Library names:
sollya_obj_t sollya_lib_doubleextended(sollya_obj_t)
sollya_obj_t sollya_lib_doubleextended_obj()
int sollya_lib_is_doubleextended_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_doubleextended(sollya_obj_t)
#define SOLLYA_DE(x) sollya_lib_build_function_doubleextended(x)

Description:

∙ doubleextended is a function that computes the nearest floating-point number with 64 bits of
mantissa to a given number. Since it is a function, it can be composed with other Sollya functions
such as exp, sin, etc.

∙ doubleextended now does handle subnormal numbers for a presumed exponent width of the
double-extended format of 15 bits. This means, with respect to rounding, doubleextended be-
haves as a IEEE 754-2008 binary79 with a 64 bit significand (with a hidden bit normal range),
one sign bit and a 15 bit exponent field would behave. This behavior may be different from the
one observed on Intel-based IA32/Intel64 processors (or compatible versions from other vendors).
However it is the one seen on HP/Intel Itanium when the precision specifier is double-extended
and pseudo-denormals are activated.

∙ Since it is a function and not a command, its behavior is a bit different from the behavior of
round(x,64,RN) even if the result is exactly the same. round(x,64,RN) is immediately evaluated
whereas doubleextended(x) can be composed with other functions (and thus be plotted and so
on).

Example 1:

> display=binary!;
> DE(0.1);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> round(0.1,64,RN);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)

Example 2:

78

> D(2^(-2000));
0
> DE(2^(-20000));
0

Example 3:

> verbosity=1!;
> f = sin(DE(x));
> f(pi);
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
-5.016557612668332023557327080330757013831561670255e-20
> g = sin(round(x,64,RN));
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.

See also: roundcoefficients (8.162), halfprecision (8.80), single (8.172), double (8.49), doubledou-
ble (8.50), quad (8.146), tripledouble (8.191), round (8.161)

8.52 dyadic
Name: dyadic

special value for global state display

Library names:
sollya_obj_t sollya_lib_dyadic()
int sollya_lib_is_dyadic(sollya_obj_t)

Description:

∙ dyadic is a special value used for the global state display. If the global state display is equal to
dyadic, all data will be output in dyadic notation with numbers displayed in Gappa format.
As any value it can be affected to a variable and stored in lists.

See also: decimal (8.35), powers (8.134), hexadecimal (8.82), binary (8.19), display (8.46)

8.53 ==
Name: ==

equality test operator

Library name:
sollya_obj_t sollya_lib_cmp_equal(sollya_obj_t, sollya_obj_t)

Usage:

expr1 == expr2 : (any type, any type) → boolean

Parameters:

∙ expr1 and expr2 represent expressions

Description:

∙ The test expr1 == expr2 returns true when expr1 and expr2 are syntactically equal and different
from error, @NaN@ and [@NaN@, @NaN]. Conversely if expr1 and expr2 are objects that are
mathematically different and Sollya manages to figure it out, the test returns false. In between
these two cases, there is the grey zone of expressions that are not syntactically equal but are
mathematically equal. In such a case, Sollya normally tries to determine if the expressions are

79

mathematically equal and if it manages to prove it, it returns true, without a warning. In the
case when expr1 and expr2 are two constant expressions, Sollya will in particular try to evaluate
their difference: in the case when the difference is 0 or is so small that Sollya does not manage to
obtain a faithful rounding of the real value, it will return true (with a warning if it has not been
possible to actually prove that the real value is 0). In any other case, when both expressions are
not syntactically equal and Sollya has not been able to prove that they are mathematically equal,
it returns false.

∙ The level of simplifications performed by Sollya to determine if expressions are mathematically
equal depends on the value of autosimplify. If it is off, no formal simplification is performed,
hence expression trees as simple as x+1 and 1+x will be considered not equal. Conversely, if
autosimplify is set to on, polynomial subexpressions that are mathematically equal will in general
be recognized as being equal.

∙ The user should always keep in mind that a litteral constant written in decimal arithmetic (such as
0.1 for instance) is not considered as an exact constant by Sollya (unless it is exactly representable
in binary without requiring too much precision) and is first correctly rounded at precision prec,
prior to any other operation. Of course, this leads to a rounding warning, but it is important
to remember that this is done before the expression trees are compared, possibly leading to two
expressions comparing equal, while they are obviously mathematically different, just because they
contain different constants that have been rounded to the same value at precision prec. As a
general rule, to avoid this behavior, the user should represent constants in an exact format such
as hexadecimal or represent decimal constants as integer fractions (e.g., 0.1 represented by the
constant expression 1/10).

∙ Notice that @NaN@, [@NaN, @NaN@] and error share the property that they compare not equal
to anything, including themselves. This means if a variable a contains @NaN@, [@NaN, @NaN@]
or error and whatever the content of variable b is, the test a == b returns false. The standard way
of testing if a contains @NaN@, [@NaN@, @NaN@] or error is indeed to check if a == a returns
false. error can be distinguished from @NaN@ and [@NaN@, @NaN@] using the != operator. In
order to distinguish @NaN@ from [@NaN@, @NaN@], a match ... with ... construct must be used.

Example 1:

> "Hello" == "Hello";
true
> "Hello" == "Salut";
false
> "Hello" == 5;
false
> 5 + x == 5 + x;
true

Example 2:

> verbosity = 1!;
> asin(1) * 2 == pi;
true
> cos(3)^2 == 1 - sin(3)^2;
Warning: the tool is unable to decide an equality test by evaluation even though
faithful evaluation of the terms has been possible. The terms will be considere

d to be equal.
true
> exp(5) == log(4);
false

Example 3:

80

> autosimplify=off;
Automatic pure tree simplification has been deactivated.
> exp(1+x) == exp(x+1);
false
> autosimplify=on;
Automatic pure tree simplification has been activated.
> exp(1+x) == exp(x+1);
false
> (1/3+x)^2 == x^2 + 1/9 + (5-3)*x/3;
true
> log(x)/log(10) == log10(x);
false

Example 4:

> prec = 12;
The precision has been set to 12 bits.
> verbosity = 1!;
> 16384.1 == 16385.1;
Warning: Rounding occurred when converting the constant "16384.1" to floating-po
int with 12 bits.
If safe computation is needed, try to increase the precision.
Warning: Rounding occurred when converting the constant "16385.1" to floating-po
int with 12 bits.
If safe computation is needed, try to increase the precision.
true
> 16384 == 16384.25;
false
> 0.1 == 1/10;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 12 bits.
If safe computation is needed, try to increase the precision.
false
> 0.1 == round(1/10, prec, RN);
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 12 bits.
If safe computation is needed, try to increase the precision.
true

Example 5:

81

> error == error;
false
> error != error;
false
> @NaN@ == @NaN@;
false
> @NaN@ != @NaN@;
true
> [@NaN@,@NaN@] == [@NaN@,@NaN@];
false
> [@NaN@,@NaN@] != [@NaN@,@NaN@];
true
> error == @NaN@;
false
> error != @NaN@;
false
> a = error;
> match a with

@NaN@ : ("a contains @NaN@")
[@NaN@, @NaN@] : ("a contains [@NaN@, @NaN@]")
default:("a contains something else");

error
> a = @NaN@;
> match a with

@NaN@ : ("a contains @NaN@")
[@NaN@, @NaN@] : ("a contains [@NaN@, @NaN@]")
default:("a contains something else");

a contains @NaN@
> a = [@NaN@, @NaN@];
> match a with

@NaN@ : ("a contains @NaN@")
[@NaN@, @NaN@] : ("a contains [@NaN@, @NaN@]")
default:("a contains something else");

a contains [@NaN@, @NaN@]

See also: != (8.115), > (8.78), >= (8.75), <= (8.96), < (8.105), in (8.89), ! (8.117), && (8.6), || (8.124),
error (8.56), prec (8.135), autosimplify (8.16)

8.54 erf
Name: erf

the error function.

Library names:
sollya_obj_t sollya_lib_erf(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_erf(sollya_obj_t)
#define SOLLYA_ERF(x) sollya_lib_build_function_erf(x)

Description:

∙ erf is the error function defined by:

erf(𝑥) = 2√
𝜋

∫︁ 𝑥

0
𝑒−𝑡2

d𝑡.

∙ It is defined for every real number x.

See also: erfc (8.55), exp (8.59)

82

8.55 erfc
Name: erfc

the complementary error function.

Library names:
sollya_obj_t sollya_lib_erfc(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_erfc(sollya_obj_t)
#define SOLLYA_ERFC(x) sollya_lib_build_function_erfc(x)

Description:

∙ erfc is the complementary error function defined by erfc(𝑥) = 1 − erf(𝑥).

∙ It is defined for every real number 𝑥.

See also: erf (8.54)

8.56 error
Name: error

expression representing an input that is wrongly typed or that cannot be executed

Library names:
sollya_obj_t sollya_lib_error()
int sollya_lib_obj_is_error(sollya_obj_t)

Usage:

error : error

Description:

∙ The variable error represents an input during the evaluation of which a type or execution error
has been detected or is to be detected. Inputs that are syntactically correct but wrongly typed
evaluate to error at some stage. Inputs that are correctly typed but containing commands that
depend on side-effects that cannot be performed or inputs that are wrongly typed at meta-level
(cf. parse), evaluate to error.
Remark that in contrast to all other elements of the Sollya language, error compares neither
equal nor unequal to itself. This provides a means of detecting syntax errors inside the Sollya
language itself without introducing issues of two different wrongly typed inputs being equal.

Example 1:

> print(5 + "foo");
error

Example 2:

> error;
error

Example 3:

> error == error;
false
> error != error;
false

Example 4:

83

> correct = 5 + 6;
> incorrect = 5 + "foo";
> correct == correct;
true
> incorrect == incorrect;
false
> errorhappened = !(incorrect == incorrect);
> errorhappened;
true

See also: void (8.196), parse (8.125), == (8.53), != (8.115)

8.57 evaluate
Name: evaluate

evaluates a function at a constant point or in a range

Library name:
sollya_obj_t sollya_lib_evaluate(sollya_obj_t, sollya_obj_t)

Usage:

evaluate(function, constant) : (function, constant) → constant | range
evaluate(function, range) : (function, range) → range

evaluate(function, function2) : (function, function) → function

Parameters:

∙ function represents a function

∙ constant represents a constant point

∙ range represents a range

∙ function2 represents a function that is not constant

Description:

∙ If its second argument is a constant constant, evaluate evaluates its first argument function at
the point indicated by constant. This evaluation is performed in a way that the result is a faithful
rounding of the real value of the function at constant to the current global precision. If such a
faithful rounding is not possible, evaluate returns a range surely encompassing the real value of
the function function at constant. If even interval evaluation is not possible because the expression
is undefined or numerically unstable, NaN will be produced.

∙ If its second argument is a range range, evaluate evaluates its first argument function by interval
evaluation on this range range. This ensures that the image domain of the function function on
the preimage domain range is surely enclosed in the returned range.

∙ In the case when the second argument is a range that is reduced to a single point (such that
[1; 1] for instance), the evaluation is performed in the same way as when the second argument is
a constant but it produces a range as a result: evaluate automatically adjusts the precision of
the intern computations and returns a range that contains at most three floating-point consecutive
numbers in precision prec. This corresponds to the same accuracy as a faithful rounding of the
actual result. If such a faithful rounding is not possible, evaluate has the same behavior as in the
case when the second argument is a constant.

∙ If its second argument is a function function2 that is not a constant, evaluate replaces all occur-
rences of the free variable in function function by function function2.

Example 1:

84

> midpointmode=on!;
> print(evaluate(sin(pi * x), 2.25));
0.70710678118654752440084436210484903928483593768847
> print(evaluate(sin(pi * x), [2.25; 2.25]));
0.707106781186547524400844362104849039284835937688~4/5~

Example 2:

> print(evaluate(sin(pi * x), 2));
[-3.100365765139897619749121887390789523854170596558e-13490;5.300240158585712760
5350842426029223241500776302528e-13489]

Example 3:

> print(evaluate(sin(pi * x), [2, 2.25]));
[-5.143390272677254630046998919961912407349224165421e-50;0.707106781186547524400
84436210484903928483593768866]

Example 4:

> print(evaluate(sin(pi * x), 2 + 0.25 * x));
sin((pi) * 2 + x * (pi) * 0.25)

Example 5:

> print(evaluate(sin(pi * 1/x), 0));
[-1;1]

See also: isevaluable (8.95)

8.58 execute
Name: execute

executes the content of a file

Library name:
void sollya_lib_execute(sollya_obj_t)

Usage:

execute(filename) : string → void

Parameters:

∙ filename is a string representing a file name

Description:

∙ execute opens the file indicated by filename, and executes the sequence of commands it contains.
This command is evaluated at execution time: this way you can modify the file filename (for
instance using bashexecute) and execute it just after.

∙ If filename contains a command execute, it will be executed recursively.

∙ If filename contains a call to restart, it will be neglected.

∙ If filename contains a call to quit, the commands following quit in filename will be neglected.

Example 1:

85

> a=2;
> a;
2
> print("a=1;") > "example.sollya";
> execute("example.sollya");
> a;
1

Example 2:

> verbosity=1!;
> print("a=1; restart; a=2;") > "example.sollya";
> execute("example.sollya");
Warning: a restart command has been used in a file read into another.
This restart command will be neglected.
> a;
2

Example 3:

> verbosity=1!;
> print("a=1; quit; a=2;") > "example.sollya";
> execute("example.sollya");
Warning: the execution of a file read by execute demanded stopping the interpret
ation but it is not stopped.
> a;
1

See also: parse (8.125), readfile (8.152), write (8.198), print (8.138), bashexecute (8.18), quit
(8.147), restart (8.157)

8.59 exp
Name: exp

the exponential function.

Library names:
sollya_obj_t sollya_lib_exp(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_exp(sollya_obj_t)
#define SOLLYA_EXP(x) sollya_lib_build_function_exp(x)

Description:

∙ exp is the usual exponential function defined as the solution of the ordinary differential equation
𝑦′ = 𝑦 with 𝑦(0) = 1.

∙ exp(x) is defined for every real number 𝑥.

See also: exp (8.59), log (8.101)

8.60 expand
Name: expand

expands polynomial subexpressions

Library name:
sollya_obj_t sollya_lib_expand(sollya_obj_t)

Usage:

86

expand(function) : function → function

Parameters:

∙ function represents a function

Description:

∙ expand(function) expands all polynomial subexpressions in function function as far as possible.
Factors of sums are multiplied out, power operators with constant positive integer exponents are
replaced by multiplications.

Example 1:

> print(expand(x^3));
x * x * x

Example 2:

> print(expand((x + 2)^3 + 2 * x));
8 + 12 * x + 6 * x * x + x * x * x + 2 * x

Example 3:

> print(expand(exp((x + (x + 3))^5)));
exp(243 + 405 * x + 270 * x * x + 90 * x * x * x + 15 * x * x * x * x + x * x *
x * x * x + x * 405 + 108 * x * 5 * x + 54 * x * x * 5 * x + 12 * x * x * x * 5
* x + x * x * x * x * 5 * x + x * x * 270 + 27 * x * x * x * 10 + 9 * x * x * x
* x * 10 + x * x * x * x * x * 10 + x * x * x * 90 + 6 * x * x * x * x * 10 + x
* x * x * x * x * 10 + x * x * x * x * 5 * x + 15 * x * x * x * x + x * x * x *
x * x)

See also: dirtysimplify (8.45), simplify (8.170), horner (8.85), coeff (8.26), degree (8.37)

8.61 expm1
Name: expm1

shifted exponential function.

Library names:
sollya_obj_t sollya_lib_expm1(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_expm1(sollya_obj_t)
#define SOLLYA_EXPM1(x) sollya_lib_build_function_expm1(x)

Description:

∙ expm1 is defined by expm1(𝑥) = exp(𝑥) − 1.

∙ It is defined for every real number 𝑥.

See also: exp (8.59)

8.62 exponent
Name: exponent

returns the scaled binary exponent of a number.

Library name:
sollya_obj_t sollya_lib_exponent(sollya_obj_t)

Usage:

87

exponent(x) : constant → integer

Parameters:

∙ x is a dyadic number.

Description:

∙ exponent(x) is by definition 0 if 𝑥 is one of 0, NaN, or Inf.

∙ If x is not zero, it can be uniquely written as 𝑥 = 𝑚 · 2𝑒 where 𝑚 is an odd integer and 𝑒 is an
integer. exponent(𝑥) returns 𝑒.

Example 1:

> a=round(Pi,20,RN);
> e=exponent(a);
> e;
-17
> m=mantissa(a);
> a-m*2^e;
0

See also: mantissa (8.106), precision (8.136)

8.63 externalplot
Name: externalplot

plots the error of an external code with regard to a function

Library names:
void sollya_lib_externalplot(sollya_obj_t, sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, ...)
void sollya_lib_v_externalplot(sollya_obj_t, sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, va_list)

Usage:

externalplot(filename, mode, function, range, precision) : (string, absolute|relative, function, range,
integer) → void

externalplot(filename, mode, function, range, precision, perturb) : (string, absolute|relative, function,
range, integer, perturb) → void

externalplot(filename, mode, function, range, precision, plot mode, result filename) : (string,
absolute|relative, function, range, integer, file|postscript|postscriptfile, string) → void

externalplot(filename, mode, function, range, precision, perturb, plot mode, result filename) : (string,
absolute|relative, function, range, integer, perturb, file|postscript|postscriptfile, string) → void

Description:

∙ The command externalplot plots the error of an external function evaluation code sequence
implemented in the object file named filename with regard to the function function. If mode
evaluates to absolute, the difference of both functions is considered as an error function; if mode
evaluates to relative, the difference is divided by the function function. The resulting error function
is plotted on all floating-point numbers with precision significant mantissa bits in the range range.
If the sixth argument of the command externalplot is given and evaluates to perturb, each of
the floating-point numbers the function is evaluated at gets perturbed by a random value that is
uniformly distributed in ±1 ulp around the original precision bit floating-point variable.
If a sixth and seventh argument, respectively a seventh and eighth argument in the presence of
perturb as a sixth argument, are given that evaluate to a variable of type file|postscript|postscriptfile

88

respectively to a character sequence of type string, externalplot will plot (additionally) to a file
in the same way as the command plot does. See plot for details.
The external function evaluation code given in the object file name filename is supposed to define
a function name f as follows (here in C syntax): void f(mpfr_t rop, mpfr_t op). This function
is supposed to evaluate op with an accuracy corresponding to the precision of rop and assign this
value to rop.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: plot (8.128), asciiplot (8.10), perturb (8.126), absolute (8.2), relative (8.154), file (8.66),
postscript (8.131), postscriptfile (8.132), bashexecute (8.18), externalproc (8.64), library (8.98)

8.64 externalproc
Name: externalproc

binds an external code to a Sollya procedure

Library names:
sollya_obj_t sollya_lib_externalprocedure(sollya_externalprocedure_type_t,

sollya_externalprocedure_type_t *,
int, char *, void *);

sollya_obj_t sollya_lib_externalprocedure_with_data(
sollya_externalprocedure_type_t,
sollya_externalprocedure_type_t *,
int, char *, void *, void *,
void (*)(void *));

Usage:

externalproc(identifier, filename, argumenttype -> resulttype) : (identifier type, string, type type, type
type) → void

Parameters:

∙ identifier represents the identifier the code is to be bound to

∙ filename of type string represents the name of the object file where the code of procedure can be
found

∙ argumenttype represents a definition of the types of the arguments of the Sollya procedure and
the external code

∙ resulttype represents a definition of the result type of the external code

Description:

∙ externalproc allows for binding the Sollya identifier identifier to an external code. After this
binding, when Sollya encounters identifier applied to a list of actual parameters, it will evaluate
these parameters and call the external code with these parameters. If the external code indicated
success, it will receive the result produced by the external code, transform it to Sollya’s internal
representation and return it.
In order to allow correct evaluation and typing of the data in parameter and in result to be
passed to and received from the external code, externalproc has a third parameter argumenttype
-> resulttype. Both argumenttype and resulttype are one of void, constant, function, object,

89

range, integer, string, boolean, list of constant, list of function, list of object, list of
range, list of integer, list of string, list of boolean.
It is worth mentionning that the difference between the data and result type function and the type
object is minimal and due to support of legacy Sollya code. Both Sollya functions and Sollya
objects are transferred from and to the external procedure thru the C type sollya_obj_t. The
difference is that Sollya will check that a certain object is a mathematical function when function
is used as a type, and will skip this test if the object type is used. Similarly, Sollya relies on an
object produced by the external procedure to be a mathematical function when function is used
and will not make this assumption for object.
If upon a usage of a procedure bound to an external procedure the type of the actual parameters
given or its number is not correct, Sollya produces a type error. An external function not applied
to arguments represents itself and prints out with its argument and result types.
The external function is supposed to return an integer indicating success. It returns its result
depending on its Sollya result type as follows. Here, the external procedure is assumed to be
implemented as a C function.

– If the Sollya result type is void, the C function has no pointer argument for the result.
– If the Sollya result type is constant, the first argument of the C function is of C type mpfr_t

*, the result is returned by affecting the MPFR variable.
– If the Sollya result type is function, the first argument of the C function is of C type

sollya_obj_t *, the result is returned by affecting the sollya_obj_t variable.
– If the Sollya result type is object, the first argument of the C function is of C type

sollya_obj_t *, the result is returned by affecting the sollya_obj_t variable.
– If the Sollya result type is range, the first argument of the C function is of C type mpfi_t

*, the result is returned by affecting the MPFI variable.
– If the Sollya result type is integer, the first argument of the C function is of C type int *,

the result is returned by affecting the int variable.
– If the Sollya result type is string, the first argument of the C function is of C type char **,

the result is returned by the char * pointed with a new char *.
– If the Sollya result type is boolean, the first argument of the C function is of C type int

*, the result is returned by affecting the int variable with a boolean value.
– If the Sollya result type is list of type, the first argument of the C function is of a C type

depending on the Sollya return type:
* For a list of constant: sollya_constant_list_t *
* For a list of function: sollya_obj_list_t *
* For a list of object: sollya_obj_list_t *
* For a list of range: sollya_constant_list_t *
* For a list of integer: sollya_int_list_t *
* For a list of string: sollya_string_list_t *
* For a list of boolean: sollya_boolean_list_t *

The external procedure affects its possible pointer argument if and only if it succeeds. This means, if
the function returns an integer indicating failure, it does not leak any memory to the encompassing
environment.
The external procedure receives its arguments as follows: If the Sollya argument type is void, no
argument array is given. Otherwise the C function receives a C void ** argument representing an
array of size equal to the arity of the function where each entry (of C type void *) represents a
value with a C type depending on the corresponding Sollya type.

– If the Sollya type is constant, the void * is to be cast to mpfr_t *.
– If the Sollya type is function, the void * is to be cast to sollya_obj_t.

90

– If the Sollya type is object, the void * is to be cast to sollya_obj_t.
– If the Sollya type is range, the void * is to be cast to mpfi_t *.
– If the Sollya type is integer, the void * is to be cast to int *.
– If the Sollya type is string, the void * is to be cast to char *.
– If the Sollya type is boolean, the void * is to be cast to int *.
– If the Sollya type is list of type, the void * is to be cast to a list of a type depending on

the type of the list argument:
* For a list of constant: sollya_constant_list_t
* For a list of function: sollya_obj_list_t
* For a list of object: sollya_obj_list_t
* For a list of range: sollya_interval_list_t
* For a list of integer: sollya_int_list_t
* For a list of string: sollya_string_list_t
* For a list of boolean: sollya_boolean_list_t

The external procedure is not supposed to alter the memory pointed by its array argument void
**.
In both directions (argument and result values), empty lists are represented by NULL pointers.
Similarly to internal procedures, externally bounded procedures can be considered to be objects
inside Sollya that can be assigned to other variables, stored in list etc.

∙ The user should be aware that they may use the Sollya library in external codes to be dynamically
bound to Sollya using externalproc. On most systems, it suffices to include the header of the
Sollya library into the source code of the external procedure. Linking with the actual Sollya
library is not necessary on most systems; as the interactive Sollya executable contains a superset
of the Sollya library functions. On some systems, linking with the Sollya library or some of its
dependencies may be necessary.
In particular, the Sollya library – and, of course, its header file – contain a certain set of
functions to manipulate lists with elements of certain types, such as sollya_constant_list_t,
sollya_obj_list_t and so on. As explained above, these types are passed in argument to (and
received back thru a reference from) an external procedure. These list manipulation functions are
not strictly necessary to the use of the Sollya library in free-standing applications that do not
use the functionality provided with externalproc. They are therefore provided as-is without any
further documentation, besides the comments given in the Sollya library header file.

∙ The dynamic object file whose name is given to externalproc for binding of an external procedure
may also define a destructor function int sollya_external_lib_close(void). If Sollya finds
such a destructor function in the dynamic object file, it will call that function when closing the
dynamic object file again. This happens when Sollya is terminated or when the current Sollya
session is restarted using restart. The purpose of the destructor function is to allow the dynami-
cally bound code to free any memory that it might have allocated before Sollya is terminated or
restarted.
The dynamic object file is not necessarily needed to define a destructor function. This ensure
backward compatibility with older Sollya external library function object files.
When defined, the destructor function is supposed to return an integer value indicating if an error
has happened. Upon success, the destructor functions is to return a zero value, upon error a
non-zero value.

Example 1:

91

> bashexecute("gcc -fPIC -Wall -c externalprocexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocexample externalprocexample.o");

> externalproc(foo, "./externalprocexample", (integer, integer) -> integer);
> foo;
foo
> foo(5, 6);
11
> verbosity = 1!;
> foo();
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> a = foo;
> a(5,6);
11

See also: library (8.98), libraryconstant (8.99), externalplot (8.63), bashexecute (8.18), void
(8.196), constant (8.29), function (8.73), range (8.148), integer (8.92), string (8.176), boolean
(8.21), list of (8.100), object (8.120)

8.65 false
Name: false

the boolean value representing the false.

Library names:
sollya_obj_t sollya_lib_false()
int sollya_lib_is_false(sollya_obj_t)

Description:

∙ false is the usual boolean value.

Example 1:

> true && false;
false
> 2<1;
false

See also: true (8.192), && (8.6), || (8.124)

8.66 file
Name: file

special value for commands plot and externalplot

Library names:
sollya_obj_t sollya_lib_file()
int sollya_lib_is_file(sollya_obj_t)

Description:

∙ file is a special value used in commands plot and externalplot to save the result of the command
in a data file.

∙ As any value it can be affected to a variable and stored in lists.

92

Example 1:

> savemode=file;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.63), plot (8.128), postscript (8.131), postscriptfile (8.132)

8.67 findzeros
Name: findzeros

gives a list of intervals containing all zeros of a function on an interval.

Library name:
sollya_obj_t sollya_lib_findzeros(sollya_obj_t, sollya_obj_t)

Usage:

findzeros(f,I) : (function, range) → list

Parameters:

∙ f is a function.

∙ I is an interval.

Description:

∙ findzeros(f,I) returns a list of intervals 𝐼1, . . . , 𝐼𝑛 such that, for every zero 𝑧 of 𝑓 , there exists
some 𝑘 such that 𝑧 ∈ 𝐼𝑘.

∙ The list may contain intervals 𝐼𝑘 that do not contain any zero of f. An interval Ik may contain
many zeros of f.

∙ This command is meant for cases when safety is critical. If you want to be sure not to forget
any zero, use findzeros. However, if you just want to know numerical values for the zeros of f,
dirtyfindzeros should be quite satisfactory and a lot faster.

∙ If 𝛿 denotes the value of global variable diam, the algorithm ensures that for each 𝑘, |𝐼𝑘| ≤ 𝛿 · |𝐼|.

∙ The algorithm used is basically a bisection algorithm. It is the same algorithm that the one used
for infnorm. See the help page of this command for more details. In short, the behavior of the
algorithm depends on global variables prec, diam, taylorrecursions and hopitalrecursions.

Example 1:

> findzeros(sin(x),[-5;5]);
[|[-3.14208984375;-3.140869140625], [-1.220703125e-3;1.220703125e-3], [3.1408691
40625;3.14208984375]|]
> diam=1e-10!;
> findzeros(sin(x),[-5;5]);
[|[-3.14159265370108187198638916015625;-3.141592652536928653717041015625], [-1.1
6415321826934814453125e-9;1.16415321826934814453125e-9], [3.14159265253692865371
7041015625;3.14159265370108187198638916015625]|]

See also: dirtyfindzeros (8.42), infnorm (8.91), prec (8.135), diam (8.39), taylorrecursions (8.187),
hopitalrecursions (8.84), numberroots (8.118)

93

8.68 fixed
Name: fixed

indicates that fixed-point formats should be used for fpminimax

Library names:
sollya_obj_t sollya_lib_fixed()
int sollya_lib_is_fixed(sollya_obj_t)

Usage:

fixed : fixed|floating

Description:

∙ The use of fixed in the command fpminimax indicates that the list of formats given as argument
is to be considered to be a list of fixed-point formats. See fpminimax for details.

Example 1:

> fpminimax(cos(x),6,[|32,32,32,32,32,32,32|],[-1;1],fixed);
0.9999997480772435665130615234375 + x^2 * (-0.4999928693287074565887451171875 +
x^2 * (4.163351492024958133697509765625e-2 + x^2 * (-1.3382239267230033874511718
75e-3)))

See also: fpminimax (8.71), floating (8.69)

8.69 floating
Name: floating

indicates that floating-point formats should be used for fpminimax

Library names:
sollya_obj_t sollya_lib_floating()
int sollya_lib_is_floating(sollya_obj_t)

Usage:

floating : fixed|floating

Description:

∙ The use of floating in the command fpminimax indicates that the list of formats given as argu-
ment is to be considered to be a list of floating-point formats. See fpminimax for details.

Example 1:

> fpminimax(cos(x),6,[|D...|],[-1;1],floating);
0.99999974816012215939053930924274027347564697265625 + x * (-2.79593179695850233
4440230695107655659202089892465e-15 + x * (-0.4999928698020140171998093592264922
3357439041137695 + x * (4.0484539189054105169841244454207387920433372507922e-14
+ x * (4.1633515528919168291466235132247675210237503051758e-2 + x * (-4.01585881
8743733758578949218474363725507386355118e-14 + x * (-1.3382240885483781024645200
119493892998434603214264e-3))))))

See also: fpminimax (8.71), fixed (8.68)

8.70 floor
Name: floor

the usual function floor.

Library names:

94

sollya_obj_t sollya_lib_floor(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_floor(sollya_obj_t)
#define SOLLYA_FLOOR(x) sollya_lib_build_function_floor(x)

Description:

∙ floor is defined as usual: floor(𝑥) is the greatest integer y such that 𝑦 ≤ 𝑥.

∙ It is defined for every real number 𝑥.

See also: ceil (8.23), nearestint (8.114), round (8.161), RD (8.151)

8.71 fpminimax
Name: fpminimax

computes a good polynomial approximation with fixed-point or floating-point coefficients

Library names:
sollya_obj_t sollya_lib_fpminimax(sollya_obj_t, sollya_obj_t, sollya_obj_t,

sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_fpminimax(sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, va_list)

Usage:

fpminimax(f, n, formats, range, indic1, indic2, indic3, P) : (function, integer, list, range,
absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |

fixed|floating | function, function) → function
fpminimax(f, monomials, formats, range, indic1, indic2, indic3, P) : (function, list, list, range,

absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |
fixed|floating | function, function) → function

fpminimax(f, n, formats, L, indic1, indic2, indic3, P) : (function, integer, list, list, absolute|relative |
fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating |

function, function) → function
fpminimax(f, monomials, formats, L, indic1, indic2, indic3, P) : (function, list, list, list,

absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |
fixed|floating | function, function) → function

Parameters:

∙ f is the function to be approximated

∙ n is the degree of the polynomial that must approximate f

∙ monomials is a list of integers or a list of function. It indicates the basis for the approximation of f

∙ formats is a list indicating the formats that the coefficients of the polynomial must have

∙ range is the interval where the function must be approximated

∙ L is a list of interpolation points used by the method

∙ indic1 (optional) is one of the optional indication parameters. See the detailed description below.

∙ indic2 (optional) is one of the optional indication parameters. See the detailed description below.

∙ indic3 (optional) is one of the optional indication parameters. See the detailed description below.

∙ P (optional) is the minimax polynomial to be considered for solving the problem.

Description:

95

∙ fpminimax uses a heuristic (but practically efficient) method to find a good polynomial approxi-
mation of a function f on an interval range. It implements the method published in the article:
Efficient polynomial 𝐿∞-approximations
Nicolas Brisebarre and Sylvain Chevillard
Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH 18)
pp. 169-176

∙ The basic usage of this command is fpminimax(f, n, formats, range). It computes a polynomial
approximation of 𝑓 with degree at most 𝑛 on the interval range. formats is a list of integers or
format types (such as double, doubledouble, etc.). The polynomial returned by the command
has its coefficients that fit the formats indications. For instance, if formats[0] is 35, the coefficient
of degree 0 of the polynomial will fit a floating-point format of 35 bits. If formats[1] is D, the
coefficient of degree 1 will be representable by a floating-point number with a precision of 53 bits
(which is not necessarily an IEEE 754 double precision number. See the remark below), etc.

∙ The second argument may be either an integer, a list of integers or a list of functions. An integer
indicates the degree of the desired polynomial approximation. A list of integers indicates the list of
desired monomials. For instance, the list [|0, 2, 4, 6|] indicates that the polynomial must be even
and of degree at most 6. Giving an integer 𝑛 as second argument is equivalent as giving [|0, . . . , 𝑛|].
Finally, a list of function 𝑔𝑘 indicates that the desired approximation must be a linear combination
of the 𝑔𝑘.
The list of formats is interpreted with respect to the list of monomials. For instance, if the list of
monomials is [|0, 2, 4, 6|] and the list of formats is [|161, 107, 53, 24|], the coefficients of degree 0
is searched as a floating-point number with precision 161, the coefficient of degree 2 is searched as
a number of precision 107, and so on.

∙ The list of formats may contain either integers or format types (halfprecision, single, double,
doubledouble, tripledouble, doubleextended and quad). The list may be too large or even
infinite. Only the first indications will be considered. For instance, for a degree 𝑛 polynomial,
formats[𝑛 + 1] and above will be discarded. This lets one use elliptical indications for the last
coefficients.

∙ The floating-point coefficients considered by fpminimax do not have an exponent range. In
particular, in the format list, double is an exact synonym for 53. Currently, fpminimax only
ensures that the corresponding coefficient has at most 53 bits of mantissa. It does not imply that
it is an IEEE-754 double.

∙ By default, the list of formats is interpreted as a list of floating-point formats. This may be changed
by passing fixed as an optional argument (see below). Let us take an example: fpminimax(𝑓 ,2,
[|107, DD, 53|], [0; 1]). Here the optional argument is missing (we could have set it to floating).
Thus, fpminimax will search for a polynomial of degree 2 with a constant coefficient that is a 107
bits floating-point number, etc.
Currently, doubledouble is just a synonym for 107 and tripledouble a synonym for 161. This
behavior may change in the future (taking into account the fact that some double-doubles are not
representable with 107 bits).
Second example: fpminimax(𝑓 , 2, [|25, 18, 30|], [0; 1], fixed). In this case, fpminimax will search
for a polynomial of degree 2 with a constant coefficient of the form 𝑚/225 where 𝑚 is an integer. In
other words, it is a fixed-point number with 25 bits after the point. Note that even with argument
fixed, the formats list is allowed to contain halfprecision, single, double, doubleextended,
doubledouble, quad or tripledouble. In this this case, it is just a synonym for 11, 24, 53, 64,
107, 113 or 161. This is deprecated and may change in the future.

∙ The fourth argument may be a range or a list. Lists are for advanced users that know what they
are doing. The core of the method is a kind of approximated interpolation. The list given here is a
list of points that must be considered for the interpolation. It must contain at least as many points
as unknown coefficients. If you give a list, it is also recommended that you provide the minimax
polynomial as last argument. If you give a range, the list of points will be automatically computed.

96

∙ The fifth, sixth and seventh arguments are optional. By default, fpminimax will approximate 𝑓
while optimizing the relative error, and interpreting the list of formats as a list of floating-point
formats.
This default behavior may be changed with these optional arguments. You may provide zero,
one, two or three of the arguments in any order. This lets the user indicate only the non-default
arguments.
The three possible arguments are:

– relative or absolute: the error to be optimized;
– floating or fixed: formats of the coefficients;
– a constrained part 𝑞.

The constrained part lets the user assign in advance some of the coefficients. For instance, for
approximating exp(𝑥), it may be interesting to search for a polynomial 𝑝 of the form

𝑝 = 1 + 𝑥 + 𝑥2

2 + 𝑎3𝑥3 + 𝑎4𝑥4.

Thus, there is a constrained part 𝑞 = 1+𝑥+𝑥2/2 and the unknown polynomial should be considered
in the monomial basis [|3, 4|]. Calling fpminimax with monomial basis [|3, 4|] and constrained
part 𝑞, will return a polynomial with the right form.

∙ The last argument is for advanced users. It is the minimax polynomial that approximates the
function 𝑓 in the given basis. If it is not given this polynomial will be automatically computed by
fpminimax.
This minimax polynomial is used to compute the list of interpolation points required by the method.
It is also used, when floating-point coefficients are desired, to give an initial assumption for the
exponents of the coeffcients. In general, you do not have to provide this argument. But if you want
to obtain several polynomials of the same degree that approximate the same function on the same
range, just changing the formats, you should probably consider computing only once the minimax
polynomial and the list of points instead of letting fpminimax recompute them each time.
Note that in the case when a constrained part is given, the minimax polynomial must take that into
account. For instance, in the previous example, the minimax would be obtained by the following
command:

P = remez(1-(1+x+x^2/2)/exp(x), [|3,4|], range, 1/exp(x));

Note that the constrained part is not to be added to 𝑃 .
In the case when the second argument is an integer or a list of integers, there is no restriction for
𝑃 , as long as it is a polynomial. However, when the second argument is a list of functions, and
even if these functions are all polynomials, 𝑃 must be expanded in the given basis. For instance,
if the second argument is 2 or [|0, 1, 2|], 𝑃 can be given in Horner form. However, if the second
argument is [|1, 𝑥, 𝑥2|], 𝑃 must be written as a linear combination of 1, 𝑥 and 𝑥2, otherwise, the
algorithm will fail to recover the coefficients of 𝑃 and will fail with an error message.
Please also note that recovering the coefficients of 𝑃 in an arbitrary basis is performed heuristically
and no verification is performed to check that 𝑃 does not contain other functions than the functions
of the basis.

∙ Note that fpminimax internally computes a minimax polynomial (using the same algorithm as
remez command). Thus fpminimax may encounter the same problems as remez. In particular,
it may be very slow when Haar condition is not fulfilled. Another consequence is that currently
fpminimax has to be run with a sufficiently high working precision.

Example 1:

> P = fpminimax(cos(x),6,[|DD, DD, D...|],[-1b-5;1b-5]);
> printexpansion(P);
(0x3ff0000000000000 + 0xbc09fda15e029b00) + x * ((0x3af9eb57163024a8 + 0x37942c2
f3f3e3839) + x * (0xbfdfffffffffff98 + x * (0xbbd1693f9c028849 + x * (0x3fa55555
55145337 + x * (0x3c7a25f610ad9ebc + x * 0xbf56c138142da5b0)))))

97

Example 2:

> P = fpminimax(sin(x),6,[|32...|],[-1b-5;1b-5], fixed, absolute);
> display = powers!;
> P;
x * (1 + x^2 * (-357913941 * 2^(-31) + x^2 * (35789873 * 2^(-32))))

Example 3:

> P = fpminimax(exp(x), [|3,4|], [|D,24|], [-1/256; 1/246], 1+x+x^2/2);
> display = powers!;
> P;
1 + x * (1 + x * (1 * 2^(-1) + x * (375300225001191 * 2^(-51) + x * (5592621 * 2
^(-27)))))

Example 4:

> f = cos(exp(x));
> pstar = remez(f, 5, [-1b-7;1b-7]);
> listpoints = dirtyfindzeros(f-pstar, [-1b-7; 1b-7]);
> P1 = fpminimax(f, 5, [|DD...|], listpoints, absolute, default, default, pstar)
;
> P2 = fpminimax(f, 5, [|D...|], listpoints, absolute, default, default, pstar);

> P3 = fpminimax(f, 5, [|D, D, D, 24...|], listpoints, absolute, default, defaul
t, pstar);
> print("Error of pstar: ", dirtyinfnorm(f-pstar, [-1b-7; 1b-7]));
Error of pstar: 7.9048441259903026332577436001060063099817726177425e-16
> print("Error of P1: ", dirtyinfnorm(f-P1, [-1b-7; 1b-7]));
Error of P1: 7.9048441259903026580081299123420463921479618202064e-16
> print("Error of P2: ", dirtyinfnorm(f-P2, [-1b-7; 1b-7]));
Error of P2: 8.2477144579950871737109573536791331686347620955985e-16
> print("Error of P3: ", dirtyinfnorm(f-P3, [-1b-7; 1b-7]));
Error of P3: 1.08454277156993282593701156841863009789063333951055e-15

Example 5:

> L = [|exp(x), sin(x), cos(x)-1, sin(x^3)|];
> g = (2^x-1)/x;
> p = fpminimax(g, L, [|D...|], [-1/16;1/16],absolute);
> display = powers!;
> p;
-3267884797436153 * 2^(-54) * sin(x^3) + 5247089102535885 * 2^(-53) * (cos(x) -
1) + -8159095033730771 * 2^(-54) * sin(x) + 6243315658446641 * 2^(-53) * exp(x)

Example 6:

98

> n = 9;
> T = [|1, x|];
> for i from 2 to n do T[i] = canonical(2*x*T[i-1]-T[i-2]);
> g = (2^x-1)/x;
> PCheb = fpminimax(g, T, [|DD,DE...|], [-1/16;1/16],absolute);
> display = dyadic!;
> print(PCheb);
8733930098894247371b-98 * (9 * x + -120 * x^3 + 432 * x^5 + -576 * x^7 + 256 * x
^9) + 15750497046710770365b-94 * (1 + -32 * x^2 + 160 * x^4 + -256 * x^6 + 128 *
x^8) + 6467380330985872933b-88 * (-7 * x + 56 * x^3 + -112 * x^5 + 64 * x^7) +

9342762606926218927b-84 * (-1 + 18 * x^2 + -48 * x^4 + 32 * x^6) + 1181452136745
6461131b-80 * (5 * x + -20 * x^3 + 16 * x^5) + 6405479474328570593b-75 * (1 + -8
* x^2 + 8 * x^4) + 11584457324781949889b-72 * (-3 * x + 4 * x^3) + 167797053124

47201161b-69 * (-1 + 2 * x^2) + 18265014280997359319b-66 * x + 11705449744817514
3902009975397253b-107

See also: remez (8.155), dirtyfindzeros (8.42), absolute (8.2), relative (8.154), fixed (8.68), floating
(8.69), default (8.36), halfprecision (8.80), single (8.172), double (8.49), doubleextended (8.51),
doubledouble (8.50), quad (8.146), tripledouble (8.191), implementpoly (8.88), coeff (8.26), de-
gree (8.37), roundcoefficients (8.162), guessdegree (8.79)

8.72 fullparentheses
Name: fullparentheses

activates, deactivates or inspects the state variable controlling output with full parenthesising

Library names:
void sollya_lib_set_fullparentheses_and_print(sollya_obj_t);
void sollya_lib_set_fullparentheses(sollya_obj_t);
sollya_obj_t sollya_lib_get_fullparentheses();

Usage:

fullparentheses = activation value : on|off → void
fullparentheses = activation value ! : on|off → void

Parameters:

∙ activation value represents on or off, i.e. activation or deactivation

Description:

∙ An assignment fullparentheses = activation value, where activation value is one of on or off,
activates respectively deactivates the output of expressions with full parenthesising. In full paren-
thesising mode, Sollya commands like print, write and the implicit command when an expression
is given at the prompt will output expressions with parenthesising at all places where it is neces-
sary for expressions containing infix operators to be parsed back with the same result. Otherwise
parentheses around associative operators are omitted.
If the assignment fullparentheses = activation value is followed by an exclamation mark, no
message indicating the new state is displayed. Otherwise the user is informed of the new state of
the global mode by an indication.

Example 1:

99

> autosimplify = off!;
> fullparentheses = off;
Full parentheses mode has been deactivated.
> print(1 + 2 + 3);
1 + 2 + 3
> fullparentheses = on;
Full parentheses mode has been activated.
> print(1 + 2 + 3);
(1 + 2) + 3

See also: print (8.138), write (8.198), autosimplify (8.16)

8.73 function
Name: function

keyword for declaring a procedure-based function or a keyword representing a function type

Library names:
sollya_obj_t sollya_lib_procedurefunction(sollya_obj_t, sollya_obj_t)
sollya_obj_t sollya_lib_build_function_procedurefunction(sollya_obj_t,

sollya_obj_t)
SOLLYA_EXTERNALPROC_TYPE_FUNCTION

Usage:
function(procedure) : procedure → function

function : type type
Parameters:

∙ procedure is a procedure of type (range, integer, integer) → range
Description:

∙ For the sake of safety and mathematical consistency, Sollya distinguishes clearly between functions,
seen in the mathematical sense of the term, i.e. mappings, and procedures, seen in the sense
Computer Science gives to functions, i.e. pieces of code that compute results for arguments following
an algorithm. In some cases however, it is interesting to use such Computer Science procedures as
realisations of mathematical functions, e.g. in order to plot them or even to perform polynomial
approximation on them. The function keyword allows for such a transformation of a Sollya
procedure into a Sollya function.

∙ The procedure to be used as a function through function(procedure) must be of type (range, integer,
integer) → range. This means it must take in argument an interval 𝑋, a degree of differentiation 𝑛
and a working precision 𝑝. It must return in result an interval 𝑌 encompassing the image 𝑓 (𝑛)(𝑋)
of the 𝑛-th derivative of the implemented function 𝑓 , i.e. 𝑓 (𝑛)(𝑋) ⊆ 𝑌 . In order to allow Sollya’s
algorithms to work properly, the procedure must ensure that, whenever (𝑝, diam(𝑋)) tends to
(+∞, 0), the computed over-estimated bounding 𝑌 tends to the actual image 𝑓 (𝑛)(𝑋).

∙ The user must be aware that they are responsible of the correctness of the procedure. If, for
some 𝑛 and 𝑋, procedure returns an interval 𝑌 such that 𝑓 (𝑛)(𝑋) ̸⊆ 𝑌 , function will successfully
return a function without any complain, but this function might behave inconsistently in further
computations.

∙ For cases when the procedure does not have the correct signature or does not return a finite interval
as a result function(procedure) evaluates to Not-A-Number (resp. to an interval of Not-A-Numbers
for interval evaluation).

∙ function also represents the function type for declarations of external procedures by means of
externalproc.
Remark that in contrast to other indicators, type indicators like function cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

100

Example 1:

101

> procedure EXP(X,n,p) {
var res, oldPrec;
oldPrec = prec;
prec = p!;

res = exp(X);

prec = oldPrec!;
return res;

};
> f = function(EXP);
> f(1);
2.7182818284590452353602874713526624977572470937
> exp(1);
2.7182818284590452353602874713526624977572470937
> f(x + 3);
(function(proc(X, n, p)
{
var res, oldPrec;
oldPrec = prec;
prec = p!;
res = exp(X);
prec = oldPrec!;
return res;
}))(3 + x)
> diff(f);
diff(function(proc(X, n, p)
{
var res, oldPrec;
oldPrec = prec;
prec = p!;
res = exp(X);
prec = oldPrec!;
return res;
}))
> (diff(f))(0);
1
> g = f(sin(x));
> g(17);
0.38235816999386683402690554641655641359573458342088
> diff(g);
(diff(function(proc(X, n, p)
{
var res, oldPrec;
oldPrec = prec;
prec = p!;
res = exp(X);
prec = oldPrec!;
return res;
})))(sin(x)) * cos(x)
> (diff(g))(1);
1.25338076749344683697237458088447611474812675164344
> p = remez(f,3,[-1/2;1/2]);
> p;
0.99967120901420646830315493949039176881764871951833 + x * (0.999737029835711401
34762682913614052309208076875596 + x * (0.51049729360282624921622721654643510358
3073053437 + x * 0.169814324607133287588897694747370380479108785868016))

102

See also: proc (8.143), library (8.98), procedure (8.144), externalproc (8.64), boolean (8.21),
constant (8.29), integer (8.92), list of (8.100), range (8.148), string (8.176), object (8.120)

8.74 gcd
Name: gcd

Computes the greatest common divisor of polynomials or numbers.

Library name:
sollya_obj_t sollya_lib_gcd(sollya_obj_t, sollya_obj_t)

Usage:

gcd(p, q) : (function, function) → function

Parameters:

∙ p is a constant or a polynomial.

∙ q is a constant or a polynomial.

Description:

∙ When both p and q are integers, gcd(p,q) computes the greatest common divisor of these two
integers, i.e. the greatest non-negative integer dividing both p and q.

∙ When both p and q are rational numbers, say 𝑎/𝑏 and 𝑐/𝑑, gcd(p,q) computes the greatest common
divisor of 𝑎 · 𝑑 and 𝑏 · 𝑐, divided by the product of the denominators, 𝑏 · 𝑑.

∙ When both p and q are constants but at least one of them is no rational number, gcd(p,q) returns 1.

∙ When both p and q are polynomials with at least one being non-constant, gcd(p,q) returns the
polynomial of greatest degree dividing both p and q, and whose leading coefficient is the greatest
common divisor of the leading coefficients of p and q.

∙ Similarly to the cases documented for div and mod, gcd may fail to return the unique polynomial
of largest degree dividing both p and q in cases when certain coefficients of either p or q are constant
expressions for which the tool is unable to determine whether they are zero or not. These cases
typically involve polynomials whose leading coefficient is zero but the tool is unable to detect this
fact.

∙ When at least one of p or q is a function that is no polynomial, gcd(p,q) returns 1.

Example 1:

> gcd(1001, 231);
77
> gcd(13, 17);
1
> gcd(-210, 462);
42

Example 2:

> rationalmode = on!;
> gcd(6/7, 33/13);
3 / 91

Example 3:

> gcd(exp(13),sin(17));
1

103

Example 4:

> gcd(24 + 68 * x + 74 * x^2 + 39 * x^3 + 10 * x^4 + x^5, 480 + 776 * x + 476 *
x^2 + 138 * x^3 + 19 * x^4 + x^5);
4 + x * (4 + x)
> gcd(1001 * x^2, 231 * x);
x * 77

Example 5:

> gcd(exp(x), x^2);
1

See also: div (8.47), mod (8.112), numberroots (8.118)

8.75 >=
Name: >=

greater-than-or-equal-to operator

Library name:
sollya_obj_t sollya_lib_cmp_greater_equal(sollya_obj_t, sollya_obj_t)

Usage:

expr1 >= expr2 : (constant, constant) → boolean

Parameters:

∙ expr1 and expr2 represent constant expressions

Description:

∙ The operator >= evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers 𝑎1 respectively 𝑎2 with the global precision prec and 𝑎1 is greater than or equal to 𝑎2.
The user should be aware of the fact that because of floating-point evaluation, the operator >= is
not exactly the same as the mathematical operation greater-than-or-equal-to.

Example 1:

> 5 >= 4;
true
> 5 >= 5;
true
> 5 >= 6;
false
> exp(2) >= exp(1);
true
> log(1) >= exp(2);
false

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 >= 16385.1;
true

See also: == (8.53), != (8.115), > (8.78), <= (8.96), < (8.105), in (8.89), ! (8.117), && (8.6), || (8.124),
prec (8.135), max (8.107), min (8.110)

104

8.76 getbacktrace
Name: getbacktrace

returns the list of Sollya procedures currently run

Library name:
sollya_obj_t sollya_lib_getbacktrace();

Usage:

getbacktrace() : void → list

Description:

∙ The getbacktrace command allows the stack of Sollya procedures that are currently run to be
inspected. When called, getbacktrace returns an ordered list of structures, each of which contains
an element passed_args and an element called_proc. The element called_proc contains the
Sollya object representing the procedure being run. The element passed_args contains an ordered
list of all effective arguments passed to the procedure when it was called. The procedure called
last (i.e., on top of the stack) comes first in the list returned by getbacktrace. When any of
the procedure called takes no arguments, the passed_args element of the corresponding structure
evaluates to an empty list.

∙ When called from outside any procedure (at toplevel), getbacktrace returns an empty list.

∙ When called for a stack containing a call to a variadic procedure that was called with an infinite
number of effective arguments, the corresponding passed_args element evaluates to an end-elliptic
list.

Example 1:

105

> procedure testA() {
"Current backtrace:";
getbacktrace();

};
> procedure testB(X) {

"X = ", X;
testA();

};
> procedure testC(X, Y) {

"X = ", X, ", Y = ", Y;
testB(Y);

};
> testC(17, 42);
X = 17, Y = 42
X = 42
Current backtrace:
[|{ .passed_args = [| |], .called_proc = proc()
{
"Current backtrace:";
getbacktrace();
return void;
} }, { .passed_args = [|42|], .called_proc = proc(X)
{
"X = ", X;
testA();
return void;
} }, { .passed_args = [|17, 42|], .called_proc = proc(X, Y)
{
"X = ", X, ", Y = ", Y;
testB(Y);
return void;
} }|]

Example 2:

> getbacktrace();
[| |]

Example 3:

106

> procedure printnumargs(X) {
var L, t;
"number of arguments: ", X;
L = getbacktrace();
"Backtrace:";
for t in L do {

" " @ objectname(t.called_proc) @ ", ", t.passed_args;
};

};
> procedure numargs(l = ...) {

"l[17] = ", l[17];
printnumargs(length(l));

};
> procedure test() {

numargs @ [|25, 26, 27 ...|];
};

> test();
l[17] = 42
number of arguments: infty
Backtrace:

printnumargs, [|infty|]
numargs, [|25, 26, 27...|]
test, [| |]

See also: proc (8.143), procedure (8.144), objectname (8.121), bind (8.20), @ (8.28)

8.77 getsuppressedmessages
Name: getsuppressedmessages

returns a list of numbers of messages that have been suppressed from message output

Library name:
sollya_obj_t sollya_lib_getsuppressedmessages();

Usage:

getsuppressedmessages() : void → list

Description:

∙ The getsuppressedmessages command allows the user to inspect the state of warning and in-
formation message suppression. When called, getsuppressedmessages returns a list of integers
numbers that stand for the warning and information messages that have been suppressed. If no
message is suppressed, getsuppressedmessages returns an empty list.

∙ Every Sollya warning or information message (that is not fatal to the tool’s execution) has a
message number. By default, these numbers are not displayed when a message is output. When
message number displaying is activated using showmessagenumbers, the message numbers are
displayed together with the message. This allows the user to match the numbers returned in a list
by getsuppressedmessages with the actual warning and information messages.

∙ The list of message numbers returned by getsuppressedmessages is suitable to be fed into the
unsuppressmessage command. This way, the user may unsuppress all warning and information
messages that have been suppressed.

Example 1:

107

> verbosity = 1;
The verbosity level has been set to 1.
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
0.1
> suppressmessage(174);
> 0.1;
0.1
> suppressmessage(407);
> 0.1;
0.1
> getsuppressedmessages();
[|174, 407|]
> suppressmessage(207, 196);
> getsuppressedmessages();
[|174, 196, 207, 407|]

Example 2:

> suppressmessage(174, 209, 13, 24, 196);
> suppressmessage([| 16, 17 |]);
> suppressmessage(19);
> unsuppressmessage([| 13, 17 |]);
> getsuppressedmessages();
[|16, 19, 24, 174, 196, 209|]
> unsuppressmessage(getsuppressedmessages());
> getsuppressedmessages();
[| |]

Example 3:

> verbosity = 12;
The verbosity level has been set to 12.
> suppressmessage(174);
> exp(x * 0.1);
Information: no Horner simplification will be performed because the given tree i
s already in Horner form.
exp(x * 0.1)
> getsuppressedmessages();
[|174|]
> verbosity = 0;
The verbosity level has been set to 0.
> exp(x * 0.1);
exp(x * 0.1)
> getsuppressedmessages();
[|174|]

See also: getsuppressedmessages (8.77), suppressmessage (8.181), unsuppressmessage (8.193),
verbosity (8.195), roundingwarnings (8.164)

8.78 >

Name: >
greater-than operator

108

Library name:
sollya_obj_t sollya_lib_cmp_greater(sollya_obj_t, sollya_obj_t)

Usage:

expr1 > expr2 : (constant, constant) → boolean

Parameters:

∙ expr1 and expr2 represent constant expressions

Description:

∙ The operator > evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers 𝑎1 respectively 𝑎2 with the global precision prec and 𝑎1 is greater than 𝑎2. The user
should be aware of the fact that because of floating-point evaluation, the operator > is not exactly
the same as the mathematical operation greater-than.

Example 1:

> 5 > 4;
true
> 5 > 5;
false
> 5 > 6;
false
> exp(2) > exp(1);
true
> log(1) > exp(2);
false

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16385.1 > 16384.1;
false

See also: == (8.53), != (8.115), >= (8.75), <= (8.96), < (8.105), in (8.89), ! (8.117), && (8.6), ||
(8.124), prec (8.135), max (8.107), min (8.110)

8.79 guessdegree
Name: guessdegree

returns the minimal degree needed for a polynomial to approximate a function with a certain error
on an interval.

Library names:
sollya_obj_t sollya_lib_guessdegree(sollya_obj_t, sollya_obj_t,

sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_guessdegree(sollya_obj_t, sollya_obj_t,

sollya_obj_t, va_list)

Usage:

guessdegree(f,I,eps,w,bound) : (function, range, constant, function, constant) → range

Parameters:

∙ f is the function to be approximated.

∙ I is the interval where the function must be approximated.

109

∙ eps is the maximal acceptable error.

∙ w (optional) is a weight function. Default is 1.

∙ bound (optional) is a bound on the degree. Default is currently 128.

Description:

∙ guessdegree tries to find the minimal degree needed to approximate f on I by a polynomial with
an error 𝜖 = 𝑝𝑤 − 𝑓 whose infinity norm not greater than eps. More precisely, it finds 𝑛 minimal
such that there exists a polynomial 𝑝 of degree 𝑛 such that ‖𝑝𝑤 − 𝑓‖∞ < eps.

∙ guessdegree returns an interval: for common cases, this interval is reduced to a single number (i.e.
the minimal degree). But in certain cases, guessdegree does not succeed in finding the minimal
degree. In such cases the returned interval is of the form [𝑛, 𝑝] such that:

– no polynomial of degree 𝑛 − 1 gives an error less than eps.
– there exists a polynomial of degree 𝑝 giving an error less than eps.

∙ The fifth optional argument bound is used to prevent guessdegree from trying to find too large
degrees. If guessdegree does not manage to find a degree 𝑛 satisfying the error and such that
𝑛 ≤ bound, an interval of the form [·, +∞] is returned. Note that bound must be a positive integer.

Example 1:

> guessdegree(exp(x),[-1;1],1e-10);
[10;10]

Example 2:

> guessdegree(exp(x),[-1;1],1e-10,default, 9);
[10;infty]

Example 3:

> guessdegree(1, [-1;1], 1e-8, 1/exp(x));
[8;9]

See also: dirtyinfnorm (8.43), remez (8.155), fpminimax (8.71), degree (8.37)

8.80 halfprecision
Names: halfprecision, HP

rounding to the nearest IEEE 754 half-precision number (binary16).

Library names:
sollya_obj_t sollya_lib_halfprecision(sollya_obj_t)
sollya_obj_t sollya_lib_halfprecision_obj()
int sollya_lib_is_halfprecision_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_halfprecision(sollya_obj_t)
#define SOLLYA_HP(x) sollya_lib_build_function_halfprecision(x)

Description:

∙ halfprecision is both a function and a constant.

∙ As a function, it rounds its argument to the nearest IEEE 754 half-precision (i.e. IEEE754-2008
binary16) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

110

∙ As a constant, it symbolizes the half-precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round and roundcoefficients. It is not supported for
implementpoly. See the corresponding help pages for examples.

Example 1:

> display=binary!;
> HP(0.1);
1.100110011_2 * 2^(-4)
> HP(4.17);
1.00001011_2 * 2^(2)
> HP(1.011_2 * 2^(-23));
1.1_2 * 2^(-23)

See also: single (8.172), double (8.49), doubleextended (8.51), doubledouble (8.50), quad (8.146),
tripledouble (8.191), roundcoefficients (8.162), fpminimax (8.71), implementpoly (8.88), round
(8.161), printsingle (8.141)

8.81 head
Name: head

gives the first element of a list.

Library name:
sollya_obj_t sollya_lib_head(sollya_obj_t)

Usage:
head(L) : list → any type

Parameters:
∙ L is a list.

Description:
∙ head(L) returns the first element of the list L. It is equivalent to L[0].

∙ If L is empty, the command will fail with an error.
Example 1:

> head([|1,2,3|]);
1
> head([|1,2...|]);
1

See also: tail (8.182), revert (8.159)

8.82 hexadecimal
Name: hexadecimal

special value for global state display

Library names:
sollya_obj_t sollya_lib_hexadecimal()
int sollya_lib_is_hexadecimal(sollya_obj_t)

Description:
∙ hexadecimal is a special value used for the global state display. If the global state display is

equal to hexadecimal, all data will be output in hexadecimal C99/ IEEE 754-2008 notation.
As any value it can be affected to a variable and stored in lists.

See also: decimal (8.35), dyadic (8.52), powers (8.134), binary (8.19), display (8.46)

111

8.83 honorcoeffprec
Name: honorcoeffprec

indicates the (forced) honoring the precision of the coefficients in implementpoly

Library names:
sollya_obj_t sollya_lib_honorcoeffprec()
int sollya_lib_is_honorcoeffprec(sollya_obj_t)

Usage:

honorcoeffprec : honorcoeffprec
Description:

∙ Used with command implementpoly, honorcoeffprec makes implementpoly honor the preci-
sion of the given polynomial. This means if a coefficient needs a double-double or a triple-double
to be exactly stored, implementpoly will allocate appropriate space and use a double-double or
triple-double operation even if the automatic (heuristic) determination implemented in command
implementpoly indicates that the coefficient could be stored on less precision or, respectively,
the operation could be performed with less precision. See implementpoly for details.

Example 1:

> verbosity = 1!;
> q = implementpoly(1 - dirtysimplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p"
,"implementation.c");
Warning: at least one of the coefficients of the given polynomial has been round
ed in a way
that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial
is different from the given one.
> printexpansion(q);
0x3ff0000000000000 + x^2 * 0xbfc5555555555555
> r = implementpoly(1 - dirtysimplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p"
,"implementation.c",honorcoeffprec);
Warning: the inferred precision of the 2th coefficient of the polynomial is grea
ter than
the necessary precision computed for this step. This may make the automatic dete
rmination
of precisions useless.
> printexpansion(r);
0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555
55555555)

See also: implementpoly (8.88), printexpansion (8.140), fpminimax (8.71)

8.84 hopitalrecursions
Name: hopitalrecursions

controls the number of recursion steps when applying L’Hopital’s rule.

Library names:
void sollya_lib_set_hopitalrecursions_and_print(sollya_obj_t)
void sollya_lib_set_hopitalrecursions(sollya_obj_t)
sollya_obj_t sollya_lib_get_hopitalrecursions()

Usage:

hopitalrecursions = n : integer → void
hopitalrecursions = n ! : integer → void

hopitalrecursions : integer

112

Parameters:

∙ n represents the number of recursions

Description:

∙ hopitalrecursions is a global variable. Its value represents the number of steps of recursion that
are tried when applying L’Hopital’s rule. This rule is applied by the interval evaluator present in
the core of Sollya (and particularly visible in commands like infnorm).

∙ If an expression of the form 𝑓/𝑔 has to be evaluated by interval arithmetic on an interval 𝐼 and if 𝑓
and 𝑔 have a common zero in 𝐼, a direct evaluation leads to NaN. Sollya implements a safe heuristic
to avoid this, based on L’Hopital’s rule: in such a case, it can be shown that (𝑓/𝑔)(𝐼) ⊆ (𝑓 ′/𝑔′)(𝐼).
Since the same problem may exist for 𝑓 ′/𝑔′, the rule is applied recursively. The number of step in
this recursion process is controlled by hopitalrecursions.

∙ Setting hopitalrecursions to 0 makes Sollya use this rule only once; setting it to 1 makes Sollya
use the rule twice, and so on. In particular: the rule is always applied at least once, if necessary.

Example 1:

> hopitalrecursions=0;
The number of recursions for Hopital’s rule has been set to 0.
> evaluate(log(1+x)^2/x^2,[-1/2; 1]);
[-infty;infty]
> hopitalrecursions=1;
The number of recursions for Hopital’s rule has been set to 1.
> evaluate(log(1+x)^2/x^2,[-1/2; 1]);
[-2.5225887222397812376689284858327062723020005374411;6.772588722239781237668928
4858327062723020005374412]

See also: taylorrecursions (8.187), infnorm (8.91), findzeros (8.67), evaluate (8.57)

8.85 horner
Name: horner

brings all polynomial subexpressions of an expression to Horner form

Library name:
sollya_obj_t sollya_lib_horner(sollya_obj_t)

Usage:

horner(function) : function → function

Parameters:

∙ function represents the expression to be rewritten in Horner form

Description:

∙ The command horner rewrites the expression representing the function function in a way such that
all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written in
Horner form. The command horner does not endanger the safety of computations even in Sollya’s
floating-point environment: the function returned is mathematically equal to the function function.

Example 1:

> print(horner(1 + 2 * x + 3 * x^2));
1 + x * (2 + x * 3)
> print(horner((x + 1)^7));
1 + x * (7 + x * (21 + x * (35 + x * (35 + x * (21 + x * (7 + x))))))

113

Example 2:

> print(horner(exp((x + 1)^5) - log(asin(x + x^3) + x)));
exp(1 + x * (5 + x * (10 + x * (10 + x * (5 + x))))) - log(asin(x * (1 + x^2)) +
x)

See also: canonical (8.22), print (8.138), coeff (8.26), degree (8.37), autosimplify (8.16), simplify
(8.170)

8.86 HP
Name: HP

short form for halfprecision

See also: halfprecision (8.80)

8.87 implementconstant
Name: implementconstant

implements a constant in arbitrary precision

Library names:
void sollya_lib_implementconstant(sollya_obj_t, ...);
void sollya_lib_v_implementconstant(sollya_obj_t, va_list);

Usage:

implementconstant(expr) : constant → void
implementconstant(expr,filename) : (constant, string) → void

implementconstant(expr,filename,functionname) : (constant, string, string) → void

Description:

∙ The command implementconstant implements the constant expression expr in arbitrary preci-
sion. More precisely, it generates the source code (written in C, and using MPFR) of a C function
const_something with the following signature:

void const_something (mpfr_ptr y, mp_prec_t prec)

Let us denote by 𝑐 the exact mathematical value of the constant defined by the expression expr.
When called with arguments 𝑦 and prec (where the variable 𝑦 is supposed to be already initialized),
the function mpfr_const_something sets the precision of 𝑦 to a suitable precision and stores in it
an approximate value of 𝑐 such that

|𝑦 − 𝑐| ≤ |𝑐| 21−prec.

∙ When no filename filename is given or if default is given as filename, the source code produced by
implementconstant is printed on standard output. Otherwise, when filename is given as a string
of characters, the source code is output to a file named filename. If that file cannot be opened
and/or written to, implementconstant fails and has no other effect.

∙ When functionname is given as an argument to implementconstant and functionname evaluates
to a string of characters, the default name for the C function const_something is replaced by
functionname. When default is given as functionname, the default name is used nevertheless, as
if no functionname argument were given. When choosing a character sequence for functionname,
the user should keep attention to the fact that functionname must be a valid C identifier in order
to enable error-free compilation of the produced code.

∙ If expr refers to a constant defined with libraryconstant, the produced code uses the external
code implementing this constant. The user should keep in mind that it is up to them to make sure
the symbol for that external code can get resolved when the newly generated code is to be loaded.

114

∙ If a subexpression of expr evaluates to 0, implementconstant will most likely fail with an error
message.

∙ implementconstant is unable to implement constant expressions expr that contain procedure-
based functions, i.e. functions created from Sollya procedures using the function construct. If
expr contains such a procedure-based function, implementconstant prints a warning and fails
silently. The reason for this lack of functionality is that the produced C source code, which is
supposed to be compiled, would have to call back to the Sollya interpreter in order to evaluate
the procedure-based function.

∙ Similarly, implementconstant is currently unable to implement constant expressions expr that
contain library-based functions, i.e. functions dynamically bound to Sollya using the library
construct. If expr contains such a library-based function, implementconstant prints a warning
and fails silently. Support for this feature is in principle feasible from a technical standpoint and
might be added in a future release of Sollya.

∙ Currently, non-differentiable functions such as double, doubledouble, tripledouble, single,
halfprecision, quad, doubleextended, floor, ceil, nearestint are not supported by imple-
mentconstant. If implementconstant encounters one of them, a warning message is displayed
and no code is produced. However, if autosimplify equals on, it is possible that Sollya silently
simplifies subexpressions of expr containing such functions and that implementconstant success-
fully produces code for evaluating expr.

∙ While it produces an MPFR-based C source code for expr, implementconstant takes architectural
and system-dependent parameters into account. For example, it checks whether literal constants
figuring in expr can be represented on a C long int type or if they must be stored in a different
manner not to affect their accuracy. These tests, performed by Sollya during execution of imple-
mentconstant, depend themselves on the architecture Sollya is running on. Users should keep
this matter in mind, especially when trying to compile source code on one machine whilst it has
been produced on another.

Example 1:

115

> implementconstant(exp(1)+log(2)/sqrt(1/10));
[The first 100 lines of the output have been removed]

modify or redistribute this generated code itself, or its skeleton,
you may (at your option) remove this special exception, which will
cause this generated code and its skeleton and the resulting Sollya
output files to be licensed under the CeCILL-C licence without this
special exception.

This special exception was added by the Sollya copyright holders in
version 4.1 of Sollya.

*/

#include <mpfr.h>

void
const_something (mpfr_ptr y, mp_prec_t prec)
{

/* Declarations */
mpfr_t tmp1;
mpfr_t tmp2;
mpfr_t tmp3;
mpfr_t tmp4;
mpfr_t tmp5;
mpfr_t tmp6;
mpfr_t tmp7;

/* Initializations */
mpfr_init2 (tmp2, prec+5);
mpfr_init2 (tmp1, prec+3);
mpfr_init2 (tmp4, prec+8);
mpfr_init2 (tmp3, prec+7);
mpfr_init2 (tmp6, prec+11);
mpfr_init2 (tmp7, prec+11);
mpfr_init2 (tmp5, prec+11);

/* Core */
mpfr_set_prec (tmp2, prec+4);
mpfr_set_ui (tmp2, 1, MPFR_RNDN);
mpfr_set_prec (tmp1, prec+3);
mpfr_exp (tmp1, tmp2, MPFR_RNDN);
mpfr_set_prec (tmp4, prec+8);
mpfr_set_ui (tmp4, 2, MPFR_RNDN);
mpfr_set_prec (tmp3, prec+7);
mpfr_log (tmp3, tmp4, MPFR_RNDN);
mpfr_set_prec (tmp6, prec+11);
mpfr_set_ui (tmp6, 1, MPFR_RNDN);
mpfr_set_prec (tmp7, prec+11);
mpfr_set_ui (tmp7, 10, MPFR_RNDN);
mpfr_set_prec (tmp5, prec+11);
mpfr_div (tmp5, tmp6, tmp7, MPFR_RNDN);
mpfr_set_prec (tmp4, prec+7);
mpfr_sqrt (tmp4, tmp5, MPFR_RNDN);
mpfr_set_prec (tmp2, prec+5);
mpfr_div (tmp2, tmp3, tmp4, MPFR_RNDN);
mpfr_set_prec (y, prec+3);
mpfr_add (y, tmp1, tmp2, MPFR_RNDN);

/* Cleaning stuff */
mpfr_clear(tmp1);
mpfr_clear(tmp2);
mpfr_clear(tmp3);
mpfr_clear(tmp4);
mpfr_clear(tmp5);
mpfr_clear(tmp6);
mpfr_clear(tmp7);

}

116

Example 2:

> implementconstant(sin(13/17),"sine_of_thirteen_seventeenth.c");
> bashevaluate("tail -n 30 sine_of_thirteen_seventeenth.c");
#include <mpfr.h>

void
const_something (mpfr_ptr y, mp_prec_t prec)
{

/* Declarations */
mpfr_t tmp1;
mpfr_t tmp2;
mpfr_t tmp3;

/* Initializations */
mpfr_init2 (tmp2, prec+6);
mpfr_init2 (tmp3, prec+6);
mpfr_init2 (tmp1, prec+6);

/* Core */
mpfr_set_prec (tmp2, prec+6);
mpfr_set_ui (tmp2, 13, MPFR_RNDN);
mpfr_set_prec (tmp3, prec+6);
mpfr_set_ui (tmp3, 17, MPFR_RNDN);
mpfr_set_prec (tmp1, prec+6);
mpfr_div (tmp1, tmp2, tmp3, MPFR_RNDN);
mpfr_set_prec (y, prec+2);
mpfr_sin (y, tmp1, MPFR_RNDN);

/* Cleaning stuff */
mpfr_clear(tmp1);
mpfr_clear(tmp2);
mpfr_clear(tmp3);

}

Example 3:

117

> implementconstant(asin(1/3 * pi),default,"arcsin_of_one_third_pi");
[The first 100 lines of the output have been removed]

modify or redistribute this generated code itself, or its skeleton,
you may (at your option) remove this special exception, which will
cause this generated code and its skeleton and the resulting Sollya
output files to be licensed under the CeCILL-C licence without this
special exception.

This special exception was added by the Sollya copyright holders in
version 4.1 of Sollya.

*/

#include <mpfr.h>

void
arcsin_of_one_third_pi (mpfr_ptr y, mp_prec_t prec)
{

/* Declarations */
mpfr_t tmp1;
mpfr_t tmp2;
mpfr_t tmp3;

/* Initializations */
mpfr_init2 (tmp2, prec+8);
mpfr_init2 (tmp3, prec+8);
mpfr_init2 (tmp1, prec+8);

/* Core */
mpfr_set_prec (tmp2, prec+8);
mpfr_const_pi (tmp2, MPFR_RNDN);
mpfr_set_prec (tmp3, prec+8);
mpfr_set_ui (tmp3, 3, MPFR_RNDN);
mpfr_set_prec (tmp1, prec+8);
mpfr_div (tmp1, tmp2, tmp3, MPFR_RNDN);
mpfr_set_prec (y, prec+2);
mpfr_asin (y, tmp1, MPFR_RNDN);

/* Cleaning stuff */
mpfr_clear(tmp1);
mpfr_clear(tmp2);
mpfr_clear(tmp3);

}

Example 4:

118

> implementconstant(ceil(log(19 + 1/3)),"constant_code.c","magic_constant");
> bashevaluate("tail -n -9 constant_code.c");
void
magic_constant (mpfr_ptr y, mp_prec_t prec)
{

/* Initializations */

/* Core */
mpfr_set_prec (y, prec);
mpfr_set_ui (y, 3, MPFR_RNDN);

}

Example 5:

> bashexecute("gcc -fPIC -Wall -c libraryconstantexample.c -I$HOME/.local/includ
e");
> bashexecute("gcc -shared -o libraryconstantexample libraryconstantexample.o -l
gmp -lmpfr");
> euler_gamma = libraryconstant("./libraryconstantexample");
> implementconstant(euler_gamma^(1/3), "euler.c");
> bashevaluate("tail -n -17 euler.c");
void
const_something (mpfr_ptr y, mp_prec_t prec)
{

/* Declarations */
mpfr_t tmp1;

/* Initializations */
mpfr_init2 (tmp1, prec+1);

/* Core */
euler_gamma (tmp1, prec+1);
mpfr_set_prec (y, prec+2);
mpfr_root (y, tmp1, 3, MPFR_RNDN);

/* Cleaning stuff */
mpfr_clear(tmp1);

}

See also: implementpoly (8.88), libraryconstant (8.99), library (8.98), function (8.73), basheval-
uate (8.17)

8.88 implementpoly
Name: implementpoly

implements a polynomial using double, double-double and triple-double arithmetic and generates a
Gappa proof

Library names:
sollya_obj_t sollya_lib_implementpoly(sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t,
sollya_obj_t, sollya_obj_t, ...)

sollya_obj_t sollya_lib_v_implementpoly(sollya_obj_t, sollya_obj_t,
sollya_obj_t, sollya_obj_t,
sollya_obj_t, sollya_obj_t, va_list)

Usage:

119

implementpoly(polynomial, range, error bound, format, functionname, filename) : (function, range,
constant, D|double|DD|doubledouble|TD|tripledouble, string, string) → function

implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient
precisions) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string,

honorcoeffprec) → function
implementpoly(polynomial, range, error bound, format, functionname, filename, proof filename) :
(function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string, string) → function
implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient

precisions, proof filename) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string,
string, honorcoeffprec, string) → function

Description:

∙ The command implementpoly implements the polynomial polynomial in range range as a function
called functionname in C code using double, double-double and triple-double arithmetic in a way
that the rounding error (estimated at its first order) is bounded by error bound. The produced code
is output in a file named filename. The argument format indicates the double, double-double or
triple-double format of the variable in which the polynomial varies, influencing also in the signature
of the C function.
If a seventh or eighth argument proof filename is given and if this argument evaluates to a variable
of type string, the command implementpoly will produce a Gappa proof that the rounding error is
less than the given bound. This proof will be output in Gappa syntax in a file name proof filename.
The command implementpoly returns the polynomial that has been implemented. As the com-
mand implementpoly tries to adapt the precision needed in each evaluation step to its strict
minimum and as it applies renormalization to double-double and triple-double precision coeffi-
cients to bring them to a round-to-nearest expansion form, the returned polynomial may differ
from the polynomial polynomial. Nevertheless the difference will be small enough that the round-
ing error bound with regard to the polynomial polynomial (estimated at its first order) will be less
than the given error bound.
If a seventh argument honor coefficient precisions is given and evaluates to a variable honorco-
effprec of type honorcoeffprec, implementpoly will honor the precision of the given polynomial
polynomials. This means if a coefficient needs a double-double or a triple-double to be exactly
stored, implementpoly will allocate appropriate space and use a double-double or triple-double
operation even if the automatic (heuristic) determination implemented in command implement-
poly indicates that the coefficient could be stored on less precision or, respectively, the operation
could be performed with less precision. The use of honorcoeffprec has advantages and disad-
vantages. If the polynomial polynomial given has not been determined by a process considering
directly polynomials with floating-point coefficients, honorcoeffprec should not be indicated. The
implementpoly command can then determine the needed precision using the same error estima-
tion as used for the determination of the precisions of the operations. Generally, the coefficients
will get rounded to double, double-double and triple-double precision in a way that minimizes their
number and respects the rounding error bound error bound. Indicating honorcoeffprec may in
this case short-circuit most precision estimations leading to sub-optimal code. On the other hand,
if the polynomial polynomial has been determined with floating-point precisions in mind, honor-
coeffprec should be indicated because such polynomials often are very sensitive in terms of error
propagation with regard to their coefficients’ values. Indicating honorcoeffprec prevents the im-
plementpoly command from rounding the coefficients and altering by many orders of magnitude
the approximation error of the polynomial with regard to the function it approximates.
The implementer behind the implementpoly command makes some assumptions on its input and
verifies them. If some assumption cannot be verified, the implementation will not succeed and
implementpoly will evaluate to a variable error of type error. The same behaviour is observed if
some file is not writable or some other side-effect fails, e.g. if the implementer runs out of memory.
As error estimation is performed only on the first order, the code produced by the implementpoly
command should be considered valid iff a Gappa proof has been produced and successfully run in
Gappa.

120

Example 1:

> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c");
1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333
333333333332176851016015461937058717012405396e-3)
> bashevaluate("tail -n -29 implementation.c");
#define p_coeff_0h 1.000
000000000000000000000e+00
#define p_coeff_2h -1.6666666666666665741480812812369549646973609924316406250000
0000000000000000000000e-01
#define p_coeff_4h 8.33333333333333321768510160154619370587170124053955078125000
000000000000000000000e-03

void p(double *p_resh, double x) {
double p_x_0_pow2h;

p_x_0_pow2h = x * x;

double p_t_1_0h;
double p_t_2_0h;
double p_t_3_0h;
double p_t_4_0h;
double p_t_5_0h;

p_t_1_0h = p_coeff_4h;
p_t_2_0h = p_t_1_0h * p_x_0_pow2h;
p_t_3_0h = p_coeff_2h + p_t_2_0h;
p_t_4_0h = p_t_3_0h * p_x_0_pow2h;
p_t_5_0h = p_coeff_0h + p_t_4_0h;
*p_resh = p_t_5_0h;

}

Example 2:

> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c","implementation.gappa");
1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333
333333333332176851016015461937058717012405396e-3)

Example 3:

121

> verbosity = 1!;
> q = implementpoly(1 - dirtysimplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p"
,"implementation.c");
Warning: at least one of the coefficients of the given polynomial has been round
ed in a way
that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial
is different from the given one.
> printexpansion(q);
0x3ff0000000000000 + x^2 * 0xbfc5555555555555
> r = implementpoly(1 - dirtysimplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p"
,"implementation.c",honorcoeffprec);
Warning: the inferred precision of the 2th coefficient of the polynomial is grea
ter than
the necessary precision computed for this step. This may make the automatic dete
rmination
of precisions useless.
> printexpansion(r);
0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555
55555555)

Example 4:

> p = 0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x
* (0x3fc5555555555559 + x * (0x3fa55555555555bd + x * (0x3f811111111106e2 + x
* (0x3f56c16c16bf5eb7 + x * (0x3f2a01a01a292dcd + x * (0x3efa01a0218a016a + x
* (0x3ec71de360331aad + x * (0x3e927e42e3823bf3 + x * (0x3e5ae6b2710c2c9a + x
* (0x3e2203730c0a7c1d + x * 0x3de5da557e0781df))))))))))));

> q = implementpoly(p,[-1/2;1/2],1b-60,D,"p","implementation.c",honorcoeffprec,"
implementation.gappa");
> if (q != p) then print("During implementation, rounding has happened.") else p
rint("Polynomial implemented as given.");
Polynomial implemented as given.

See also: honorcoeffprec (8.83), roundcoefficients (8.162), double (8.49), doubledouble (8.50),
tripledouble (8.191), bashevaluate (8.17), printexpansion (8.140), error (8.56), remez (8.155),
fpminimax (8.71), taylor (8.185), implementconstant (8.87)

8.89 in
Name: in

containment test operator

Library name:
sollya_obj_t sollya_lib_cmp_in(sollya_obj_t, sollya_obj_t)

Usage:

expr in range1 : (constant, range) → boolean
range1 in range2 : (range, range) → boolean

Parameters:

∙ expr represents a constant expression

∙ range1 and range2 represent ranges (intervals)

Description:

122

∙ When its first operand is a constant expression expr, the operator in evaluates to true iff the
constant value of the expression expr is contained in the interval range1.

∙ When both its operands are ranges (intervals), the operator in evaluates to true iff all values in
range1 are contained in the interval range2.

∙ in is also used as a keyword for loops over the different elements of a list.

Example 1:

> 5 in [-4;7];
true
> 4 in [-1;1];
false
> 0 in sin([-17;17]);
true

Example 2:

> [5;7] in [2;8];
true
> [2;3] in [4;5];
false
> [2;3] in [2.5;5];
false

Example 3:

> for i in [|1,...,5|] do print(i);
1
2
3
4
5

See also: == (8.53), != (8.115), >= (8.75), > (8.78), <= (8.96), < (8.105), ! (8.117), && (8.6), ||
(8.124), prec (8.135), print (8.138)

8.90 inf
Name: inf

gives the lower bound of an interval.

Library name:
sollya_obj_t sollya_lib_inf(sollya_obj_t)

Usage:

inf(I) : range → constant
inf(x) : constant → constant

Parameters:

∙ I is an interval.

∙ x is a real number.

Description:

∙ Returns the lower bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

123

∙ When called on a real number x, inf behaves like the identity.

Example 1:

> inf([1;3]);
1
> inf(0);
0

Example 2:

> display=binary!;
> I=[0.111110000011111_2; 1];
> inf(I);
1.11110000011111_2 * 2^(-1)
> prec=12!;
> inf(I);
1.11110000011111_2 * 2^(-1)

See also: mid (8.108), sup (8.179), max (8.107), min (8.110)

8.91 infnorm
Name: infnorm

computes an interval bounding the infinity norm of a function on an interval.

Library names:
sollya_obj_t sollya_lib_infnorm(sollya_obj_t, sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_infnorm(sollya_obj_t, sollya_obj_t, va_list)

Usage:

infnorm(f,I,filename,Ilist) : (function, range, string, list) → range

Parameters:

∙ f is a function.

∙ I is an interval.

∙ filename (optional) is the name of the file into a proof will be saved.

∙ IList (optional) is a list of intervals to be excluded.

Description:

∙ infnorm(f,range) computes an interval bounding the infinity norm of the given function 𝑓 on the
interval 𝐼, e.g. computes an interval 𝐽 such that max𝑥∈𝐼{|𝑓(𝑥)|} ⊆ 𝐽 .

∙ If filename is given, a proof in English will be produced (and stored in file called filename) proving
that max𝑥∈𝐼{|𝑓(𝑥)|} ⊆ 𝐽 .

∙ If a list IList of intervals 𝐼1, . . . , 𝐼𝑛 is given, the infinity norm will be computed on 𝐼∖(𝐼1 ∪ . . .∪ 𝐼𝑛).

∙ The function f is assumed to be at least twice continuous on I. More generally, if f is 𝒞𝑘, global
variables hopitalrecursions and taylorrecursions must have values not greater than 𝑘.

∙ If the interval is reduced to a single point, the result of infnorm is an interval containing the exact
absolute value of f at this point.

∙ If the interval is not bound, the result will be [0, +∞] which is correct but perfectly useless.
infnorm is not meant to be used with infinite intervals.

124

∙ The result of this command depends on the global variables prec, diam, taylorrecursions and
hopitalrecursions. The contribution of each variable is not easy even to analyse.

– The algorithm uses interval arithmetic with precision prec. The precision should thus be set
high enough to ensure that no critical cancellation will occur.

– When an evaluation is performed on an interval [𝑎, 𝑏], if the result is considered being too
large, the interval is split into [𝑎, 𝑎+𝑏

2] and [𝑎+𝑏
2 , 𝑏] and so on recursively. This recursion step

is not performed if the (𝑏 − 𝑎) < 𝛿 · |𝐼| where 𝛿 is the value of variable diam. In other words,
diam controls the minimum length of an interval during the algorithm.

– To perform the evaluation of a function on an interval, Taylor’s rule is applied, e.g. 𝑓([𝑎, 𝑏]) ⊆
𝑓(𝑚) + [𝑎 − 𝑚, 𝑏 − 𝑚] · 𝑓 ′([𝑎, 𝑏]) where 𝑚 = 𝑎+𝑏

2 . This rule is recursively applied 𝑛 times
where 𝑛 is the value of variable taylorrecursions. Roughly speaking, the evaluations will
avoid decorrelation up to order 𝑛.

– When a function of the form 𝑔
ℎ has to be evaluated on an interval [𝑎, 𝑏] and when 𝑔 and ℎ vanish

at a same point 𝑧 of the interval, the ratio may be defined even if the expression 𝑔(𝑧)
ℎ(𝑧) = 0

0 does

not make any sense. In this case, L’Hopital’s rule may be used and
(︀

𝑔
ℎ

)︀
([𝑎, 𝑏]) ⊆

(︁
𝑔′

ℎ′

)︁
([𝑎, 𝑏]).

Since the same can occur with the ratio 𝑔′

ℎ′ , the rule is applied recursively. The variable
hopitalrecursions controls the number of recursion steps.

∙ The algorithm used for this command is quite complex to be explained here. Please find a complete
description in the following article:
S. Chevillard and C. Lauter
A certified infinity norm for the implementation of elementary functions
LIP Research Report number RR2007-26
http://prunel.ccsd.cnrs.fr/ensl-00119810

∙ Users should be aware about the fact that the algorithm behind infnorm is inefficient in most
cases and that other, better suited algorithms, such as supnorm, are available inside Sollya. As
a matter of fact, while infnorm is maintained for compatibility reasons with legacy Sollya codes,
users are advised to avoid using infnorm in new Sollya scripts and to replace it, where possible,
by the supnorm command.

Example 1:

> infnorm(exp(x),[-2;3]);
[20.085536923187667740928529654581717896987907838554;20.085536923187667740928529
6545817178969879078385544]

Example 2:

> infnorm(exp(x),[-2;3],"proof.txt");
[20.085536923187667740928529654581717896987907838554;20.085536923187667740928529
6545817178969879078385544]

Example 3:

> infnorm(exp(x),[-2;3],[| [0;1], [2;2.5] |]);
[20.085536923187667740928529654581717896987907838554;20.085536923187667740928529
6545817178969879078385544]

Example 4:

> infnorm(exp(x),[-2;3],"proof.txt", [| [0;1], [2;2.5] |]);
[20.085536923187667740928529654581717896987907838554;20.085536923187667740928529
6545817178969879078385544]

125

Example 5:

> infnorm(exp(x),[1;1]);
[2.7182818284590452353602874713526624977572470936999;2.7182818284590452353602874
713526624977572470937]

Example 6:

> infnorm(exp(x), [log(0);log(1)]);
[0;infty]

See also: prec (8.135), diam (8.39), hopitalrecursions (8.84), taylorrecursions (8.187), dirty-
infnorm (8.43), checkinfnorm (8.25), supnorm (8.180), findzeros (8.67), diff (8.41), taylorrecur-
sions (8.187), autodiff (8.15), numberroots (8.118), taylorform (8.186)

8.92 integer
Name: integer

keyword representing a machine integer type

Library name:
SOLLYA_EXTERNALPROC_TYPE_INTEGER

Usage:

integer : type type

Description:

∙ integer represents the machine integer type for declarations of external procedures externalproc.
Remark that in contrast to other indicators, type indicators like integer cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.64), boolean (8.21), constant (8.29), function (8.73), list of (8.100),
range (8.148), string (8.176), object (8.120)

8.93 integral
Name: integral

computes an interval bounding the integral of a function on an interval.

Library name:
sollya_obj_t sollya_lib_integral(sollya_obj_t, sollya_obj_t)

Usage:

integral(f,I) : (function, range) → range

Parameters:

∙ f is a function.

∙ I is an interval.

Description:

∙ integral(f,I) returns an interval 𝐽 such that the exact value of the integral of f on I lies in 𝐽 .

∙ This command is safe but very inefficient. Use dirtyintegral if you just want an approximate
value.

126

∙ The result of this command depends on the global variable diam. The method used is the following:
I is cut into intervals of length not greater then 𝛿 · |𝐼| where 𝛿 is the value of global variable diam.
On each small interval J, an evaluation of f by interval is performed. The result is multiplied by
the length of J. Finally all values are summed.

Example 1:

> sin(10);
-0.54402111088936981340474766185137728168364301291622
> integral(cos(x),[0;10]);
[-0.54710197983579690224097637163525943075698599257333;-0.5409401513001318384815
0540881373370744053741191729]
> diam=1e-5!;
> integral(cos(x),[0;10]);
[-0.54432915685955427101857780295936956775293876382777;-0.5437130640124996950803
9644221927489010425803173555]

See also: diam (8.39), dirtyintegral (8.44), prec (8.135)

8.94 isbound
Name: isbound

indicates whether a variable is bound or not.

Usage:
isbound(ident) : boolean

Parameters:
∙ ident is a name.

Description:
∙ isbound(ident) returns a boolean value indicating whether the name ident is used or not to

represent a variable. It returns true when ident is the name used to represent the global variable
or if the name is currently used to refer to a (possibly local) variable.

∙ When a variable is defined in a block and has not been defined outside, isbound returns true when
called inside the block, and false outside. Note that isbound returns true as soon as a variable
has been declared with var, even if no value is actually stored in it.

∙ If ident1 is bound to a variable and if ident2 refers to the global variable, the command re-
name(ident2, ident1) hides the value of ident1 which becomes the global variable. However, if the
global variable is again renamed, ident1 gets its value back. In this case, isbound(ident1) returns
true. If ident1 was not bound before, isbound(ident1) returns false after that ident1 has been
renamed.

Example 1:

> isbound(x);
false
> isbound(f);
false
> isbound(g);
false
> f=sin(x);
> isbound(x);
true
> isbound(f);
true
> isbound(g);
false

127

Example 2:

> isbound(a);
false
> { var a; isbound(a); };
true
> isbound(a);
false

Example 3:

> f=sin(x);
> isbound(x);
true
> rename(x,y);
> isbound(x);
false

Example 4:

> x=1;
> f=sin(y);
> rename(y,x);
> f;
sin(x)
> x;
x
> isbound(x);
true
> rename(x,y);
> isbound(x);
true
> x;
1

See also: rename (8.156)

8.95 isevaluable
Name: isevaluable

tests whether a function can be evaluated at a point

Usage:

isevaluable(function, constant) : (function, constant) → boolean

Parameters:

∙ function represents a function

∙ constant represents a constant point

Description:

∙ isevaluable applied to function function and a constant constant returns a boolean indicating
whether or not a subsequent call to evaluate on the same function function and constant constant
will produce a numerical result or NaN. This means isevaluable returns false iff evaluate will
return NaN.

128

∙ The command isevaluable is now considered DEPRECATED in Sollya. As checks for NaNs are
now possible in Sollya, the command isevaluable can be fully emulated with a call to evaluate
and a couple of tests, as shown below in the last example.

Example 1:

> isevaluable(sin(pi * log(x)), 0.5);
true
> print(evaluate(sin(pi * log(x)), 0.5));
-0.82148283122563882875872566228649962370813607461095

Example 2:

> isevaluable(sin(pi * log(x)), 0);
true
> print(evaluate(sin(pi * log(x)), 0));
[-1;1]

Example 3:

> isevaluable(sin(pi * 1/x), 0.5);
true
> print(evaluate(sin(pi * 1/x), 0.5));
[-3.100365765139897619749121887390789523854170596558e-13490;5.300240158585712760
5350842426029223241500776302528e-13489]

Example 4:

> procedure isEvaluableEmulation(f, c) {
return match evaluate(f, c) with

NaN : (false)
[NaN;NaN] : (false)
default : (true);

};
> isEvaluableEmulation(sin(pi * log(x)), 0.5);
true
> isEvaluableEmulation(sin(pi * log(x)), 0);
true
> isEvaluableEmulation(sin(pi * log(x)), -1);
false

See also: evaluate (8.57)

8.96 <=
Name: <=

less-than-or-equal-to operator

Library name:
sollya_obj_t sollya_lib_cmp_less_equal(sollya_obj_t, sollya_obj_t)

Usage:

expr1 <= expr2 : (constant, constant) → boolean

Parameters:

∙ expr1 and expr2 represent constant expressions

Description:

129

∙ The operator <= evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers 𝑎1 respectively 𝑎2 with the global precision prec and 𝑎1 is less than or equal to 𝑎2. The
user should be aware of the fact that because of floating-point evaluation, the operator <= is not
exactly the same as the mathematical operation less-than-or-equal-to.

Example 1:

> 5 <= 4;
false
> 5 <= 5;
true
> 5 <= 6;
true
> exp(2) <= exp(1);
false
> log(1) <= exp(2);
true

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16385.1 <= 16384.1;
true

See also: == (8.53), != (8.115), >= (8.75), > (8.78), < (8.105), in (8.89), ! (8.117), && (8.6), || (8.124),
prec (8.135), max (8.107), min (8.110)

8.97 length
Name: length

computes the length of a list or string.

Library name:
sollya_obj_t sollya_lib_length(sollya_obj_t)

Usage:

length(L) : list → integer
length(s) : string → integer

Parameters:

∙ L is a list.

∙ s is a string.

Description:

∙ length returns the length of a list or a string, e.g. the number of elements or letters.

∙ The empty list or string have length 0. If L is an end-elliptic list, length returns +Inf.

Example 1:

> length("Hello World!");
12

Example 2:

> length([|1,...,5|]);
5

130

Example 3:

> length([| |]);
0

Example 4:

> length([|1,2...|]);
infty

8.98 library
Name: library

binds an external mathematical function to a variable in Sollya

Library names:
sollya_obj_t sollya_lib_libraryfunction(sollya_obj_t, char *,

int (*)(mpfi_t, mpfi_t, int))
sollya_obj_t sollya_lib_build_function_libraryfunction(sollya_obj_t, char *,

int (*)(mpfi_t,
mpfi_t, int))

sollya_obj_t sollya_lib_libraryfunction_with_data(
sollya_obj_t, char *,
int (*)(mpfi_t, mpfi_t, int, void *),
void *, void (*)(void *))

sollya_obj_t sollya_lib_build_function_libraryfunction_with_data(
sollya_obj_t, char *,
int (*)(mpfi_t,

mpfi_t, int, void *),
void *, void (*)(void *))

Usage:

library(path) : string → function

Description:

∙ The command library lets you extend the set of mathematical functions known to Sollya. By
default, Sollya knows the most common mathematical functions such as exp, sin, erf, etc. Within
Sollya, these functions may be composed. This way, Sollya should satisfy the needs of a lot of
users. However, for particular applications, one may want to manipulate other functions such as
Bessel functions, or functions defined by an integral or even a particular solution of an ODE.

∙ library makes it possible to let Sollya know about new functions. In order to let it know, you
have to provide an implementation of the function you are interested in. This implementation is a
C file containing a function of the form:

int my_ident(sollya_mpfi_t result, sollya_mpfi_t op, int n)

The semantic of this function is the following: it is an implementation of the function and its
derivatives in interval arithmetic. my_ident(result, I, n) shall store in result an enclosure of
the image set of the 𝑛-th derivative of the function f over I: 𝑓 (𝑛)(𝐼) ⊆ result.

∙ The integer value returned by the function implementation currently has no meaning.

∙ You do not need to provide a working implementation for any n. Most functions of Sollya requires
a relevant implementation only for 𝑓 , 𝑓 ′ and 𝑓 ′′. For higher derivatives, its is not so critical and
the implementation may just store [−∞, +∞] in result whenever 𝑛 > 2.

131

∙ Note that you should respect somehow interval-arithmetic standards in your implementation:
result has its own precision and you should perform the intermediate computations so that result
is as tight as possible.

∙ You can include sollya.h in your implementation and use library functionnalities of Sollya for your
implementation. However, this requires to have compiled Sollya with -fPIC in order to make the
Sollya executable code position independent and to use a system on with programs, using dlopen
to open dynamic routines can dynamically open themselves. Important notice: as the code will
be run in a context where a sollya session is already opened, the library functions must be used
directly, without calling sollya_lib_init and sollya_lib_close (calling these functions would
conflict with the current session, leading to weird and hard to debug behaviors).

∙ To bind your function into Sollya, you must use the same identifier as the function name used in
your implementation file (my_ident in the previous example). Once the function code has been
bound to an identifier, you can use a simple assignment to assign the bound identifier to yet another
identifier. This way, you may use convenient names inside Sollya even if your implementation
environment requires you to use a less convenient name.

∙ The dynamic object file whose name is given to library for binding of an external library function
may also define a destructor function int sollya_external_lib_close(void). If Sollya finds
such a destructor function in the dynamic object file, it will call that function when closing the
dynamic object file again. This happens when Sollya is terminated or when the current Sollya
session is restarted using restart. The purpose of the destructor function is to allow the dynam-
ically bound code to free any memory that it might have allocated before Sollya is terminated
or restarted. The dynamic object file is not necessarily needed to define a destructor function.
This ensure backward compatibility with older Sollya external library function object files. When
defined, the destructor function is supposed to return an integer value indicating if an error has
happened. Upon success, the destructor functions is to return a zero value, upon error a non-zero
value.

Example 1:

> bashexecute("gcc -fPIC -Wall -c libraryexample.c -I$HOME/.local/include");
> bashexecute("gcc -shared -o libraryexample libraryexample.o -lgmp -lmpfr");
> myownlog = library("./libraryexample");
> evaluate(log(x), 2);
0.69314718055994530941723212145817656807550013436025
> evaluate(myownlog(x), 2);
0.69314718055994530941723212145817656807550013436025

See also: function (8.73), bashexecute (8.18), externalproc (8.64), externalplot (8.63), diff (8.41),
evaluate (8.57), libraryconstant (8.99)

8.99 libraryconstant
Name: libraryconstant

binds an external mathematical constant to a variable in Sollya

Library names:
sollya_obj_t sollya_lib_libraryconstant(char *, void (*)(mpfr_t, mp_prec_t))
sollya_obj_t sollya_lib_build_function_libraryconstant(char *,

void (*)(mpfr_t,
mp_prec_t))

sollya_obj_t sollya_lib_libraryconstant_with_data(char *,
void (*)(mpfr_t,

mp_prec_t,
void *),

void *,

132

void (*)(void *))
sollya_obj_t sollya_lib_build_function_libraryconstant_with_data(

char *,
void (*)(mpfr_t,

mp_prec_t,
void *),

void *,
void (*)(void *))

Usage:

libraryconstant(path) : string → function

Description:

∙ The command libraryconstant lets you extend the set of mathematical constants known to
Sollya. By default, the only mathematical constant known by Sollya is pi. For particular
applications, one may want to manipulate other constants, such as Euler’s gamma constant, for
instance.

∙ libraryconstant makes it possible to let Sollya know about new constants. In order to let it know,
you have to provide an implementation of the constant you are interested in. This implementation
is a C file containing a function of the form:

void my_ident(mpfr_t result, mp_prec_t prec)

The semantic of this function is the following: it is an implementation of the constant in arbitrary
precision. my_ident(result, prec) shall set the precision of the variable result to a suitable
precision (the variable is assumed to be already initialized) and store in result an approximate
value of the constant with a relative error not greater than 21−prec. More precisely, if 𝑐 is the exact
value of the constant, the value stored in result should satisfy

|result − 𝑐| ≤ |𝑐| 21−prec.

∙ You can include sollya.h in your implementation and use library functionnalities of Sollya for your
implementation. However, this requires to have compiled Sollya with -fPIC in order to make the
Sollya executable code position independent and to use a system on with programs, using dlopen
to open dynamic routines can dynamically open themselves.

∙ To bind your constant into Sollya, you must use the same identifier as the function name used
in your implementation file (my_ident in the previous example). Once the function code has been
bound to an identifier, you can use a simple assignment to assign the bound identifier to yet another
identifier. This way, you may use convenient names inside Sollya even if your implementation
environment requires you to use a less convenient name.

∙ Once your constant is bound, it is considered by Sollya as an infinitely accurate constant (i.e. a
0-ary function, exactly like pi).

∙ The dynamic object file whose name is given to libraryconstant for binding of an external li-
brary constant may also define a destructor function int sollya_external_lib_close(void).
If Sollya finds such a destructor function in the dynamic object file, it will call that function
when closing the dynamic object file again. This happens when Sollya is terminated or when the
current Sollya session is restarted using restart. The purpose of the destructor function is to
allow the dynamically bound code to free any memory that it might have allocated before Sollya
is terminated or restarted. The dynamic object file is not necessarily needed to define a destructor
function. This ensure backward compatibility with older Sollya external library function object
files. When defined, the destructor function is supposed to return an integer value indicating if an
error has happened. Upon success, the destructor functions is to return a zero value, upon error a
non-zero value.

133

Example 1:

> bashexecute("gcc -fPIC -Wall -c libraryconstantexample.c -I$HOME/.local/includ
e");
> bashexecute("gcc -shared -o libraryconstantexample libraryconstantexample.o -l
gmp -lmpfr");
> euler_gamma = libraryconstant("./libraryconstantexample");
> prec = 20!;
> euler_gamma;
0.577215
> prec = 100!;
> euler_gamma;
0.577215664901532860606512090082
> midpointmode = on;
Midpoint mode has been activated.
> [euler_gamma];
0.57721566490153286060651209008~2/4~

See also: bashexecute (8.18), externalproc (8.64), externalplot (8.63), pi (8.127), library (8.98),
evaluate (8.57), implementconstant (8.87)

8.100 list of
Name: list of

keyword used in combination with a type keyword

Library names:
SOLLYA_EXTERNALPROC_TYPE_CONSTANT_LIST
SOLLYA_EXTERNALPROC_TYPE_FUNCTION_LIST
SOLLYA_EXTERNALPROC_TYPE_RANGE_LIST
SOLLYA_EXTERNALPROC_TYPE_INTEGER_LIST
SOLLYA_EXTERNALPROC_TYPE_STRING_LIST
SOLLYA_EXTERNALPROC_TYPE_BOOLEAN_LIST
SOLLYA_EXTERNALPROC_TYPE_OBJECT_LIST

Description:
∙ list of is used in combination with one of the following keywords for indicating lists of the respective

type in declarations of external procedures using externalproc: boolean, constant, function,
integer, range, object and string.

See also: externalproc (8.64), boolean (8.21), constant (8.29), function (8.73), integer (8.92),
range (8.148), string (8.176), object (8.120)

8.101 log
Name: log

natural logarithm.

Library names:
sollya_obj_t sollya_lib_log(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_log(sollya_obj_t)
#define SOLLYA_LOG(x) sollya_lib_build_function_log(x)

Description:
∙ log is the natural logarithm defined as the inverse of the exponential function: log(𝑦) is the unique

real number 𝑥 such that exp(𝑥) = 𝑦.

∙ It is defined only for 𝑦 ∈ [0; +∞].
See also: exp (8.59), log2 (8.104), log10 (8.102)

134

8.102 log10
Name: log10

decimal logarithm.

Library names:
sollya_obj_t sollya_lib_log10(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_log10(sollya_obj_t)
#define SOLLYA_LOG10(x) sollya_lib_build_function_log10(x)

Description:

∙ log10 is the decimal logarithm defined by: log10(𝑥) = log(𝑥)/ log(10).

∙ It is defined only for 𝑥 ∈ [0; +∞].

See also: log (8.101), log2 (8.104)

8.103 log1p
Name: log1p

translated logarithm.

Library names:
sollya_obj_t sollya_lib_log1p(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_log1p(sollya_obj_t)
#define SOLLYA_LOG1P(x) sollya_lib_build_function_log1p(x)

Description:

∙ log1p is the function defined by log1p(𝑥) = log(1 + 𝑥).

∙ It is defined only for 𝑥 ∈ [−1; +∞].

See also: log (8.101)

8.104 log2
Name: log2

binary logarithm.

Library names:
sollya_obj_t sollya_lib_log2(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_log2(sollya_obj_t)
#define SOLLYA_LOG2(x) sollya_lib_build_function_log2(x)

Description:

∙ log2 is the binary logarithm defined by: log2(𝑥) = log(𝑥)/ log(2).

∙ It is defined only for 𝑥 ∈ [0; +∞].

See also: log (8.101), log10 (8.102)

8.105 <

Name: <
less-than operator

Library name:
sollya_obj_t sollya_lib_cmp_less(sollya_obj_t, sollya_obj_t)

Usage:

135

expr1 < expr2 : (constant, constant) → boolean

Parameters:

∙ expr1 and expr2 represent constant expressions

Description:

∙ The operator < evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers 𝑎1 respectively 𝑎2 with the global precision prec and 𝑎1 is less than 𝑎2. The user should
be aware of the fact that because of floating-point evaluation, the operator < is not exactly the
same as the mathematical operation less-than.

Example 1:

> 5 < 4;
false
> 5 < 5;
false
> 5 < 6;
true
> exp(2) < exp(1);
false
> log(1) < exp(2);
true

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 < 16385.1;
false

See also: == (8.53), != (8.115), >= (8.75), > (8.78), <= (8.96), in (8.89), ! (8.117), && (8.6), || (8.124),
prec (8.135), max (8.107), min (8.110)

8.106 mantissa
Name: mantissa

returns the integer mantissa of a number.

Library name:
sollya_obj_t sollya_lib_mantissa(sollya_obj_t)

Usage:

mantissa(x) : constant → integer

Parameters:

∙ x is a dyadic number.

Description:

∙ mantissa(𝑥) is by definition 𝑥 if 𝑥 equals 0, NaN, or Inf.

∙ If x is not zero, it can be uniquely written as 𝑥 = 𝑚 · 2𝑒 where 𝑚 is an odd integer and 𝑒 is an
integer. mantissa(x) returns 𝑚.

Example 1:

136

> a=round(Pi,20,RN);
> e=exponent(a);
> m=mantissa(a);
> m;
411775
> a-m*2^e;
0

See also: exponent (8.62), precision (8.136)

8.107 max
Name: max

determines which of given constant expressions has maximum value

Library names:
sollya_obj_t sollya_lib_max(sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_max(sollya_obj_t, va_list)

Usage:

max(expr1,expr2,...,exprn) : (constant, constant, ..., constant) → constant
max(l) : list → constant

Parameters:

∙ expr are constant expressions.

∙ l is a list of constant expressions.

Description:

∙ max determines which of a given set of constant expressions expr has maximum value. To do so,
max tries to increase the precision used for evaluation until it can decide the ordering or some
maximum precision is reached. In the latter case, a warning is printed indicating that there might
actually be another expression that has a greater value.

∙ Even though max determines the maximum expression by evaluation, it returns the expression that
is maximum as is, i.e. as an expression tree that might be evaluated to any accuracy afterwards.

∙ max can be given either an arbitrary number of constant expressions in argument or a list of
constant expressions. The list however must not be end-elliptic.

∙ Users should be aware that the behavior of max follows the IEEE 754-2008 standard with respect
to NaNs. In particular, max evaluates to NaN if and only if all arguments of max are NaNs. This
means that NaNs may disappear during computations.

Example 1:

> max(1,2,3,exp(5),log(0.25));
148.41315910257660342111558004055227962348766759388
> max(17);
17

Example 2:

> l = [|1,2,3,exp(5),log(0.25)|];
> max(l);
148.41315910257660342111558004055227962348766759388

Example 3:

137

> print(max(exp(17),sin(62)));
exp(17)

Example 4:

> verbosity = 1!;
> print(max(17 + log2(13)/log2(9),17 + log(13)/log(9)));
Warning: the tool is unable to decide a maximum computation by evaluation even t
hough faithful evaluation of the terms has been possible. The terms will be cons
idered to be equal.
17 + log2(13) / log2(9)

See also: min (8.110), == (8.53), != (8.115), >= (8.75), > (8.78), < (8.105), <= (8.96), in (8.89), inf
(8.90), sup (8.179)

8.108 mid
Name: mid

gives the middle of an interval.

Library name:
sollya_obj_t sollya_lib_mid(sollya_obj_t)

Usage:

mid(I) : range → constant
mid(x) : constant → constant

Parameters:

∙ I is an interval.

∙ x is a real number.

Description:

∙ Returns the middle of the interval I. If the middle is not exactly representable at the current
precision, the value is returned as an unevaluated expression.

∙ When called on a real number x, mid behaves like the identity.

Example 1:

> mid([1;3]);
2
> mid(17);
17

See also: inf (8.90), sup (8.179)

8.109 midpointmode
Name: midpointmode

global variable controlling the way intervals are displayed.

Library names:
void sollya_lib_set_midpointmode_and_print(sollya_obj_t)
void sollya_lib_set_midpointmode(sollya_obj_t)
sollya_obj_t sollya_lib_get_midpointmode()

Usage:

138

midpointmode = activation value : on|off → void
midpointmode = activation value ! : on|off → void

midpointmode : on|off

Parameters:

∙ activation value enables or disables the mode.

Description:

∙ midpointmode is a global variable. When its value is off, intervals are displayed as usual (in the
form [𝑎; 𝑏]). When its value is on, and if 𝑎 and 𝑏 have the same first significant digits, the interval
in displayed in a way that lets one immediately see the common digits of the two bounds.

∙ This mode is supported only with display set to decimal. In other modes of display, midpoint-
mode value is simply ignored.

Example 1:

> a = round(Pi,30,RD);
> b = round(Pi,30,RU);
> d = [a,b];
> d;
[3.1415926516056060791015625;3.1415926553308963775634765625]
> midpointmode=on!;
> d;
0.314159265~1/6~e1

See also: on (8.123), off (8.122), roundingwarnings (8.164), display (8.46), decimal (8.35)

8.110 min
Name: min

determines which of given constant expressions has minimum value

Library names:
sollya_obj_t sollya_lib_min(sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_min(sollya_obj_t, va_list)

Usage:

min(expr1,expr2,...,exprn) : (constant, constant, ..., constant) → constant
min(l) : list → constant

Parameters:

∙ expr are constant expressions.

∙ l is a list of constant expressions.

Description:

∙ min determines which of a given set of constant expressions expr has minimum value. To do so,
min tries to increase the precision used for evaluation until it can decide the ordering or some
maximum precision is reached. In the latter case, a warning is printed indicating that there might
actually be another expression that has a lesser value.

∙ Even though min determines the minimum expression by evaluation, it returns the expression that
is minimum as is, i.e. as an expression tree that might be evaluated to any accuracy afterwards.

∙ min can be given either an arbitrary number of constant expressions in argument or a list of
constant expressions. The list however must not be end-elliptic.

139

∙ Users should be aware that the behavior of min follows the IEEE 754-2008 standard with respect
to NaNs. In particular, min evaluates to NaN if and only if all arguments of min are NaNs. This
means that NaNs may disappear during computations.

Example 1:

> min(1,2,3,exp(5),log(0.25));
-1.3862943611198906188344642429163531361510002687205
> min(17);
17

Example 2:

> l = [|1,2,3,exp(5),log(0.25)|];
> min(l);
-1.3862943611198906188344642429163531361510002687205

Example 3:

> print(min(exp(17),sin(62)));
sin(62)

Example 4:

> verbosity = 1!;
> print(min(17 + log2(13)/log2(9),17 + log(13)/log(9)));
Warning: the tool is unable to decide a minimum computation by evaluation even t
hough faithful evaluation of the terms has been possible. The terms will be cons
idered to be equal.
17 + log(13) / log(9)

See also: max (8.107), == (8.53), != (8.115), >= (8.75), > (8.78), < (8.105), <= (8.96), in (8.89), inf
(8.90), sup (8.179)

8.111 −
Name: −

subtraction function

Library names:
sollya_obj_t sollya_lib_sub(sollya_obj_t, sollya_obj_t)
sollya_obj_t sollya_lib_build_function_sub(sollya_obj_t, sollya_obj_t)
#define SOLLYA_SUB(x,y) sollya_lib_build_function_sub((x), (y))
sollya_obj_t sollya_lib_neg(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_neg(sollya_obj_t)
#define SOLLYA_NEG(x) sollya_lib_build_function_neg(x)

Usage:

function1 − function2 : (function, function) → function
interval1 − interval2 : (range, range) → range

interval1 − constant : (range, constant) → range
interval1 − constant : (constant, range) → range

− function1 : function → function
− interval1 : range → range

Parameters:

∙ function1 and function2 represent functions

140

∙ interval1 and interval2 represent intervals (ranges)

∙ constant represents a constant or constant expression

Description:

∙ − represents the subtraction (function) on reals. The expression function1 − function2 stands for
the function composed of the subtraction function and the two functions function1 and function2,
where function1 is the subtrahend and function2 the subtractor.

∙ − can be used for interval arithmetic on intervals (ranges). − will evaluate to an interval that safely
encompasses all images of the subtraction function with arguments varying in the given intervals.
Any combination of intervals with intervals or constants (resp. constant expressions) is supported.
However, it is not possible to represent families of functions using an interval as one argument and
a function (varying in the free variable) as the other one.

∙ − stands also for the negation function.

Example 1:

> 5 - 2;
3

Example 2:

> x - 2;
-2 + x

Example 3:

> x - x;
0

Example 4:

> diff(sin(x) - exp(x));
cos(x) - exp(x)

Example 5:

> [1;2] - [3;4];
[-3;-1]
> [1;2] - 17;
[-16;-15]
> 13 - [-4;17];
[-4;17]

Example 6:

> -exp(x);
-exp(x)
> -13;
-13
> -[13;17];
[-17;-13]

See also: + (8.129), * (8.113), / (8.48), ^ (8.133)

141

8.112 mod
Name: mod

Computes the euclidian division of polynomials or numbers and returns the rest

Library name:
sollya_obj_t sollya_lib_euclidian_mod(sollya_obj_t, sollya_obj_t)

Usage:

mod(a, b) : (function, function) → function

Parameters:

∙ a is a constant or a polynomial.

∙ b is a constant or a polynomial.

Description:

∙ mod(a,b) computes a − (b * div(a,b)). In other words, it returns the remainder of the Euclidian
division of a by b.

∙ See div for subtle cases involving polynomials whose degree can not easily be computed by the
tool as their leading coefficient is given as a constant expression that is mathematically zero but
for which the tool is unable to detect this fact.

Example 1:

> mod(1001, 231);
77
> mod(13, 17);
13
> mod(-14, 15);
1
> mod(-213, -5);
-3
> print(mod(23/13, 11/17));
105 / 221
> print(mod(exp(13),-sin(17)));
exp(13) + 460177 * sin(17)

Example 2:

> mod(24 + 68 * x + 74 * x^2 + 39 * x^3 + 10 * x^4 + x^5, 4 + 4 * x + x^2);
0
> mod(24 + 68 * x + 74 * x^2 + 39 * x^3 + 10 * x^4 + x^5, 2 * x^3);
24 + x * (68 + x * 74)
> mod(x^2, x^3);
x^2

Example 3:

> mod(exp(x), x^2);
exp(x)
> mod(x^3, sin(x));
x^3

See also: gcd (8.74), div (8.47), numberroots (8.118)

142

8.113 *
Name: *

multiplication function

Library names:
sollya_obj_t sollya_lib_mul(sollya_obj_t, sollya_obj_t)
sollya_obj_t sollya_lib_build_function_mul(sollya_obj_t, sollya_obj_t)
#define SOLLYA_MUL(x,y) sollya_lib_build_function_mul((x), (y))

Usage:
function1 * function2 : (function, function) → function

interval1 * interval2 : (range, range) → range
interval1 * constant : (range, constant) → range
interval1 * constant : (constant, range) → range

Parameters:
∙ function1 and function2 represent functions

∙ interval1 and interval2 represent intervals (ranges)

∙ constant represents a constant or constant expression
Description:

∙ * represents the multiplication (function) on reals. The expression function1 * function2 stands
for the function composed of the multiplication function and the two functions function1 and
function2.

∙ * can be used for interval arithmetic on intervals (ranges). * will evaluate to an interval that
safely encompasses all images of the multiplication function with arguments varying in the given
intervals. Any combination of intervals with intervals or constants (resp. constant expressions) is
supported. However, it is not possible to represent families of functions using an interval as one
argument and a function (varying in the free variable) as the other one.

Example 1:

> 5 * 2;
10

Example 2:

> x * 2;
x * 2

Example 3:

> x * x;
x^2

Example 4:

> diff(sin(x) * exp(x));
sin(x) * exp(x) + exp(x) * cos(x)

Example 5:

> [1;2] * [3;4];
[3;8]
> [1;2] * 17;
[17;34]
> 13 * [-4;17];
[-52;221]

See also: + (8.129), − (8.111), / (8.48), ^ (8.133)

143

8.114 nearestint
Name: nearestint

the function mapping the reals to the integers nearest to them.

Library names:
sollya_obj_t sollya_lib_nearestint(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_nearestint(sollya_obj_t)
#define SOLLYA_NEARESTINT(x) sollya_lib_build_function_nearestint(x)

Description:

∙ nearestint is defined as usual: nearestint(𝑥) is the integer nearest to 𝑥, with the special rule
that the even integer is chosen if there exist two integers equally near to 𝑥.

∙ It is defined for every real number 𝑥.

See also: ceil (8.23), floor (8.70), round (8.161), RN (8.160)

8.115 !=
Name: !=

negated equality test operator

Library name:
sollya_obj_t sollya_lib_cmp_not_equal(sollya_obj_t, sollya_obj_t)

Usage:

expr1 != expr2 : (any type, any type) → boolean

Parameters:

∙ expr1 and expr2 represent expressions

Description:

∙ The operator != evaluates to true iff its operands expr1 and expr2 are syntactically unequal and
both different from error, constant expressions that are not constants and that evaluate to two
different floating-point number with the global precision prec or polynomials that are unequal
while automatic expression simplification is activated. The user should be aware of the fact that
because of floating-point evaluation, the operator != is not exactly the same as the negation of the
mathematical equality. Further, expressions that are polynomials may not be structurally equal
when != evaluates to false; in order to obtain purely structural tests, the user should deactivate
automatic simplification using autosimplify.
Following the IEEE 754 standard, NaN compares unequal to itself, even though this corresponds
to a case when expr1 and expr2 are syntactically equal and different from error. Accordingly, the
interval [NaN, NaN] compares unequal to itself.
Note that the expressions !(expr1 != expr2) and expr1 == expr2 do not always evaluate to the
same boolean value. See error for details.

Example 1:

> "Hello" != "Hello";
false
> "Hello" != "Salut";
true
> "Hello" != 5;
true
> 5 + x != 5 + x;
false

144

Example 2:

> 1 != exp(0);
false
> asin(1) * 2 != pi;
false
> exp(5) != log(4);
true

Example 3:

> sin(pi/6) != 1/2 * sqrt(3);
true

Example 4:

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 != 16385.1;
false

Example 5:

> NaN != NaN;
true
> [NaN,NaN] != [NaN,NaN];
true
> error != error;
false

Example 6:

> p = x + x^2;
> q = x * (1 + x);
> autosimplify = on;
Automatic pure tree simplification has been activated.
> p != q;
false
> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> p != q;
true

See also: == (8.53), > (8.78), >= (8.75), <= (8.96), < (8.105), in (8.89), ! (8.117), && (8.6), || (8.124),
error (8.56), prec (8.135), autosimplify (8.16)

8.116 nop
Name: nop

no operation

Usage:

nop : void → void
nop() : void → void

nop(n) : integer → void

Description:

145

∙ The command nop does nothing. This means it is an explicit parse element in the Sollya language
that finally does not produce any result or side-effect.

∙ The command nop may take an optional positive integer argument n. The argument controls how
much (useless) multiprecision floating-point multiplications Sollya performs while doing nothing.
With this behaviour, nop can be used for calibration of timing tests.

∙ The keyword nop is implicit in some procedure definitions. Procedures without imperative body
get parsed as if they had an imperative body containing one nop statement.

Example 1:

> nop;

Example 2:

> nop(100);

Example 3:

> succ = proc(n) { return n + 1; };
> succ;
proc(n)
{
nop;
return (n) + (1);
}
> succ(5);
6

See also: proc (8.143), time (8.189)

8.117 !
Name: !

boolean NOT operator

Library name:
sollya_obj_t sollya_lib_negate(sollya_obj_t)

Usage:

! expr : boolean → boolean

Parameters:

∙ expr represents a boolean expression

Description:

∙ ! evaluates to the boolean NOT of the boolean expression expr. ! expr evaluates to true iff expr
does not evaluate to true.

Example 1:

> ! false;
true

Example 2:

> ! (1 == exp(0));
false

See also: && (8.6), || (8.124)

146

8.118 numberroots
Name: numberroots

Computes the number of roots of a polynomial in a given range.

Library name:
sollya_obj_t sollya_lib_numberroots(sollya_obj_t, sollya_obj_t)

Usage:

numberroots(p, I) : (function, range) → integer

Parameters:

∙ p is a polynomial.

∙ I is an interval.

Description:

∙ numberroots rigorously computes the number of roots of polynomial the 𝑝 in the interval 𝐼. The
technique used is Sturm’s algorithm. The value returned is not just a numerical estimation of the
number of roots of 𝑝 in 𝐼: it is the exact number of roots.

∙ The command findzeros computes safe enclosures of all the zeros of a function, without forgetting
any, but it is not guaranteed to separate them all in distinct intervals. numberroots is more
accurate since it guarantees the exact number of roots. However, it does not compute them. It
may be used, for instance, to certify that findzeros did not put two distinct roots in the same
interval.

∙ Multiple roots are counted only once.

∙ The interval 𝐼 must be bounded. The algorithm cannot handle unbounded intervals. Moreover,
the interval is considered as a closed interval: if one (or both) of the endpoints of 𝐼 are roots of 𝑝,
they are counted.

∙ The argument 𝑝 can be any expression, but if Sollya fails to prove that it is a polynomial an error
is produced. Also, please note that if the coefficients of 𝑝 or the endpoints of 𝐼 are not exactly
representable, they are first numerically evaluated, before the algorithm is used. In that case, the
counted number of roots corresponds to the rounded polynomial on the rounded interval and not
to the exact parameters given by the user. A warning is displayed to inform the user.

Example 1:

> numberroots(1+x-x^2, [1,2]);
1
> findzeros(1+x-x^2, [1,2]);
[|[1.617919921875;1.6180419921875]|]

Example 2:

> numberroots((1+x)*(1-x), [-1,1]);
2
> numberroots(x^2, [-1,1]);
1

Example 3:

> verbosity = 1!;
> numberroots(x-pi, [0,4]);
Warning: the 0th coefficient of the polynomial is neither a floating point
constant nor can be evaluated without rounding to a floating point constant.
Will faithfully evaluate it with the current precision (165 bits)
1

147

Example 4:

> verbosity = 1!;
> numberroots(1+x-x^2, [0, @Inf@]);
Warning: the given interval must have finite bounds.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> numberroots(exp(x), [0, 1]);
Warning: the given function must be a polynomial in this context.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

See also: dirtyfindzeros (8.42), findzeros (8.67), gcd (8.74)

8.119 numerator
Name: numerator

gives the numerator of an expression

Library name:
sollya_obj_t sollya_lib_numerator(sollya_obj_t)

Usage:

numerator(expr) : function → function

Parameters:

∙ expr represents an expression

Description:

∙ If expr represents a fraction expr1/expr2, numerator(expr) returns the numerator of this fraction,
i.e. expr1.
If expr represents something else, numerator(expr) returns the expression itself, i.e. expr.
Note that for all expressions expr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> numerator(5/3);
5

Example 2:

> numerator(exp(x));
exp(x)

Example 3:

> a = 5/3;
> b = numerator(a)/denominator(a);
> print(a);
5 / 3
> print(b);
5 / 3

148

Example 4:

> a = exp(x/3);
> b = numerator(a)/denominator(a);
> print(a);
exp(x / 3)
> print(b);
exp(x / 3)

See also: denominator (8.38), rationalmode (8.150)

8.120 object
Name: object

keyword representing a Sollya object type

Library name:
SOLLYA_EXTERNALPROC_TYPE_OBJECT

Usage:

object : type type

Description:

∙ object represents the Sollya object type for declarations of external procedures externalproc.
Remark that in contrast to other indicators, type indicators like object cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.64), boolean (8.21), constant (8.29), function (8.73), list of (8.100),
range (8.148), string (8.176), integer (8.92)

8.121 objectname
Name: objectname

returns, given a Sollya object, a string that can be reparsed to the object

Library name:
sollya_obj_t sollya_lib_objectname(sollya_obj_t);

Usage:

objectname(obj) : any type → string

Description:

∙ objectname(obj) queries the Sollya symbol table in order to recover the name of an identifier
the object obj is assigned to. If it succeeds, it returns a string containing the recovered identifier.
In contrast, if it does not succeed, it returns a string simply containing a textual representation
of obj.

∙ The only condition for an identifier to be eligible to be returned by objectname(obj) is to be
accessible in the scope objectname is executed in, i.e., not to be shadowed by an identifier of the
same name which does not hold the object obj.

∙ In any case, if the string returned by objectname is given to the parse command in the same
scope, the original object obj is recovered.

∙ objectname is particularly useful in combination with getbacktrace, when the Sollya procedure
stack is to be displayed in a fashion, where procedures are identified by their name and not their
procedural content.

149

∙ objectname may also be used to get a string representation of the free mathematical variable.

∙ If an object is simply to be cast into a string, without trying to retrieve an identifier for it,
objectname is not appropriate. In this case, it suffices to concatenate it to an empty string with
the @ operator.

Example 1:

> s = "Hello";
> objectname("Hello");
s

Example 2:

> f = exp(x);
> g = sin(x);
> [| objectname(exp(x)), objectname(sin(x)), objectname(cos(x)) |];
[|"f", "g", "cos(x)"|]

Example 3:

> o = { .f = exp(x), .I = [-1;1] };
> s1 = o@""; s1;
{ .f = exp(x), .I = [-1;1] }
> s2 = objectname({ .I = [-1;1], .f = exp(x)}); s2;
o
> parse(s1) == parse(s2);
true
> write("s2 = \"", s2, "\" parses to ", parse(s2), "\n");
s2 = "o" parses to { .f = exp(x), .I = [-1;1] }

Example 4:

> n = 1664;
> objectname(n);
n

Example 5:

> f = exp(x);
> g = sin(x);
> procedure test() {

var f;
var h;
f = tan(x);
h = cos(x);
[| objectname(exp(x)), objectname(sin(x)), objectname(cos(x)), objectname(

tan(x)) |];
};

> test();
[|"exp(x)", "g", "h", "f"|]

Example 6:

150

> procedure apply_proc(p, a, b) {
return p(a, b);

};
> procedure show_trace_and_add(n, m) {

var i, bt;
bt = getbacktrace();
write("Procedure stack:\n");
for i from 0 to length(bt) - 1 do {

write(" Procedure ", objectname((bt[i]).called_proc), " called with
", length((bt[i]).passed_args), " arguments\n");

};
write("\n");
return n + m;

};
> procedure show_and_succ(u) {

return apply_proc(show_trace_and_add, u, 1);
};

> show_and_succ(16);
Procedure stack:

Procedure show_trace_and_add called with 2 arguments
Procedure apply_proc called with 3 arguments
Procedure show_and_succ called with 1 arguments

17

Example 7:

> f = exp(three_decker_sauerkraut_and_toadstool_sandwich_with_arsenic_sauce);
> g = sin(_x_);
> h = f(g);
> h;
exp(sin(three_decker_sauerkraut_and_toadstool_sandwich_with_arsenic_sauce))
> objectname(_x_);
three_decker_sauerkraut_and_toadstool_sandwich_with_arsenic_sauce

See also: parse (8.125), var (8.194), getbacktrace (8.76), proc (8.143), procedure (8.144), @ (8.28)

8.122 off
Name: off

special value for certain global variables.

Library names:
sollya_obj_t sollya_lib_off()
int sollya_lib_is_off(sollya_obj_t)

Description:

∙ off is a special value used to deactivate certain functionnalities of Sollya.

∙ As any value it can be affected to a variable and stored in lists.

Example 1:

151

> canonical=on;
Canonical automatic printing output has been activated.
> p=1+x+x^2;
> mode=off;
> p;
1 + x + x^2
> canonical=mode;
Canonical automatic printing output has been deactivated.
> p;
1 + x * (1 + x)

See also: on (8.123), autosimplify (8.16), canonical (8.22), timing (8.190), fullparentheses (8.72),
midpointmode (8.109), rationalmode (8.150), roundingwarnings (8.164), timing (8.190), dieon-
errormode (8.40)

8.123 on
Name: on

special value for certain global variables.

Library names:
sollya_obj_t sollya_lib_on()
int sollya_lib_is_on(sollya_obj_t)

Description:

∙ on is a special value used to activate certain functionnalities of Sollya.

∙ As any value it can be affected to a variable and stored in lists.

Example 1:

> p=1+x+x^2;
> mode=on;
> p;
1 + x * (1 + x)
> canonical=mode;
Canonical automatic printing output has been activated.
> p;
1 + x + x^2

See also: off (8.122), autosimplify (8.16), canonical (8.22), timing (8.190), fullparentheses (8.72),
midpointmode (8.109), rationalmode (8.150), roundingwarnings (8.164), timing (8.190), dieon-
errormode (8.40)

8.124 ||
Name: ||

boolean OR operator

Library name:
sollya_obj_t sollya_lib_or(sollya_obj_t, sollya_obj_t)

Usage:

expr1 || expr2 : (boolean, boolean) → boolean

Parameters:

∙ expr1 and expr2 represent boolean expressions

152

Description:

∙ || evaluates to the boolean OR of the two boolean expressions expr1 and expr2. || evaluates to true
iff at least one of expr1 or expr2 evaluates to true.

Example 1:

> false || false;
false

Example 2:

> (1 == exp(0)) || (0 == log(1));
true

See also: && (8.6), ! (8.117)

8.125 parse
Name: parse

parses an expression contained in a string

Library name:
sollya_obj_t sollya_lib_parse(sollya_obj_t)

Usage:

parse(string) : string → function | error

Parameters:

∙ string represents a character sequence

Description:

∙ parse(string) parses the character sequence string containing an expression built on constants and
base functions.
If the character sequence does not contain a well-defined expression, a warning is displayed indi-
cating a syntax error and parse returns a error of type error.

∙ The character sequence to be parsed by parse may contain commands that return expressions, in-
cluding parse itself. Those commands get executed after the string has been parsed. parse(string)
will return the expression computed by the commands contained in the character sequence string.

Example 1:

> parse("exp(x)");
exp(x)

Example 2:

> text = "remez(exp(x),5,[-1;1])";
> print("The string", text, "gives", parse(text));
The string remez(exp(x),5,[-1;1]) gives 8.73819098827562036768683157316876049039
64388498642e-3 * x^5 + 4.3793696379596015478233171265365272893795005588381e-2 *
x^4 + 0.16642465614952768185129433844012193925654065755905 * x^3 + 0.49919698262
963614991826575452094101562044819693772 * x^2 + 1.000038346505998154663400680582
31011540878088492516 * x + 1.00004475029559502606203712816558243384077522932213

Example 3:

153

> verbosity = 1!;
> parse("5 + * 3");
Warning: syntax error, unexpected *. Will try to continue parsing (expecting ";"
). May leak memory.
Warning: the string "5 + * 3" could not be parsed by the miniparser.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

See also: execute (8.58), readfile (8.152), print (8.138), error (8.56), dieonerrormode (8.40)

8.126 perturb
Name: perturb

indicates random perturbation of sampling points for externalplot

Library names:
sollya_obj_t sollya_lib_perturb()
int sollya_lib_is_perturb(sollya_obj_t)

Usage:

perturb : perturb

Description:

∙ The use of perturb in the command externalplot enables the addition of some random noise
around each sampling point in externalplot.
See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.63), absolute (8.2), relative (8.154), bashexecute (8.18)

8.127 pi
Name: pi

the constant 𝜋.

Library names:
sollya_obj_t sollya_lib_pi()
int sollya_lib_is_pi(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_pi()
#define SOLLYA_PI (sollya_lib_build_function_pi())

Description:

∙ pi is the constant 𝜋, defined as half the period of sine and cosine.

∙ In Sollya, pi is considered a 0-ary function. This way, the constant is not evaluated at the time
of its definition but at the time of its use. For instance, when you define a constant or a function
relating to 𝜋, the current precision at the time of the definition does not matter. What is important
is the current precision when you evaluate the function or the constant value.

154

∙ Remark that when you define an interval, the bounds are first evaluated and then the interval is
defined. In this case, pi will be evaluated as any other constant value at the definition time of the
interval, thus using the current precision at this time.

Example 1:

> verbosity=1!; prec=12!;
> a = 2*pi;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding to 12
bits of the true result.

6.283
> prec=20!;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding to 20
bits of the true result.

6.28319

Example 2:

> display=binary;
Display mode is binary numbers.
> prec=12!;
> d = [pi; 5];
> d;
[1.1001001_2 * 2^(1);1.01_2 * 2^(2)]
> prec=20!;
> d;
[1.1001001_2 * 2^(1);1.01_2 * 2^(2)]

See also: cos (8.30), sin (8.171), tan (8.183), asin (8.11), acos (8.4), atan (8.13), evaluate (8.57),
prec (8.135), libraryconstant (8.99)

8.128 plot
Name: plot

plots one or several functions

Library names:
void sollya_lib_plot(sollya_obj_t, sollya_obj_t, ...)
void sollya_lib_v_plot(sollya_obj_t, sollya_obj_t, va_list)

Usage:

plot(f1, ... ,fn, I) : (function, ... ,function, range) → void
plot(f1, ... ,fn, I, file, name) : (function, ... ,function, range, file, string) → void

plot(f1, ... ,fn, I, postscript, name) : (function, ... ,function, range, postscript, string) → void
plot(f1, ... ,fn, I, postscriptfile, name) : (function, ... ,function, range, postscriptfile, string) → void

plot(L, I) : (list, range) → void
plot(L, I, file, name) : (list, range, file, string) → void

plot(L, I, postscript, name) : (list, range, postscript, string) → void
plot(L, I, postscriptfile, name) : (list, range, postscriptfile, string) → void

Parameters:

∙ f1, ..., fn are functions to be plotted.

∙ L is a list of functions to be plotted.

∙ I is the interval where the functions have to be plotted.

155

∙ name is a string representing the name of a file.

Description:

∙ This command plots one or several functions f1, ... ,fn on an interval I. Functions can be either
given as parameters of plot or as a list L which elements are functions. The functions are drawn
on the same plot with different colors.

∙ If L contains an element that is not a function (or a constant), an error occurs.

∙ plot relies on the value of global variable points. Let 𝑛 be the value of this variable. The algorithm
is the following: each function is evaluated at 𝑛 evenly distributed points in I. At each point, the
computed value is a faithful rounding of the exact value with a sufficiently high precision. Each
point is finally plotted. This should avoid numerical artefacts such as critical cancellations.

∙ The plot can be saved either as a data file or as a postscript file.

∙ If you use argument file with a string name, Sollya will save a data file called name.dat and
a gnuplot directives file called name.p. Invoking gnuplot on name.p will plot the data stored in
name.dat.

∙ If you use argument postscript with a string name, Sollya will save a postscript file called
name.eps representing your plot.

∙ If you use argument postscriptfile with a string name, Sollya will produce the corresponding
name.dat, name.p and name.eps.

∙ By default, this command uses gnuplot to produce the final plot. If Sollya is run while the
environment variable SOLLYA_GNUPLOT is set, the content of that variable is used as the gnuplot
binary. If your terminal is not graphic (typically if you use Sollya through ssh without -X) gnuplot
should be able to detect that and produce an ASCII-art version on the standard output. If it is
not the case, you can either store the plot in a postscript file to view it locally, or use asciiplot
command.

∙ If every function is constant, plot will not plot them but just display their value.

∙ If the interval is reduced to a single point, plot will just display the value of the functions at this
point.

Example 1:

> plot(sin(x),0,cos(x),[-Pi,Pi]);

Example 2:

> plot(sin(x),0,cos(x),[-Pi,Pi],postscriptfile,"plotSinCos");

Example 3:

> plot(exp(0), sin(1), [0;1]);
1
0.84147098480789650665250232163029899962256306079837

Example 4:

> plot(sin(x), cos(x), [1;1]);
0.84147098480789650665250232163029899962256306079837
0.54030230586813971740093660744297660373231042061792

See also: externalplot (8.63), asciiplot (8.10), file (8.66), postscript (8.131), postscriptfile (8.132),
points (8.130)

156

8.129 +
Name: +

addition function

Library names:
sollya_obj_t sollya_lib_add(sollya_obj_t, sollya_obj_t)
sollya_obj_t sollya_lib_build_function_add(sollya_obj_t, sollya_obj_t)
#define SOLLYA_ADD(x,y) sollya_lib_build_function_add((x), (y))

Usage:
function1 + function2 : (function, function) → function

interval1 + interval2 : (range, range) → range
interval1 + constant : (range, constant) → range
interval1 + constant : (constant, range) → range

Parameters:
∙ function1 and function2 represent functions

∙ interval1 and interval2 represent intervals (ranges)

∙ constant represents a constant or constant expression
Description:

∙ + represents the addition (function) on reals. The expression function1 + function2 stands for the
function composed of the addition function and the two functions function1 and function2.

∙ + can be used for interval arithmetic on intervals (ranges). + will evaluate to an interval that safely
encompasses all images of the addition function with arguments varying in the given intervals.
Any combination of intervals with intervals or constants (resp. constant expressions) is supported.
However, it is not possible to represent families of functions using an interval as one argument and
a function (varying in the free variable) as the other one.

Example 1:

> 1 + 2;
3

Example 2:

> x + 2;
2 + x

Example 3:

> x + x;
x * 2

Example 4:

> diff(sin(x) + exp(x));
cos(x) + exp(x)

Example 5:

> [1;2] + [3;4];
[4;6]
> [1;2] + 17;
[18;19]
> 13 + [-4;17];
[9;30]

See also: − (8.111), * (8.113), / (8.48), ^ (8.133)

157

8.130 points
Name: points

controls the number of points chosen by Sollya in certain commands.

Library names:
void sollya_lib_set_points_and_print(sollya_obj_t)
void sollya_lib_set_points(sollya_obj_t)
sollya_obj_t sollya_lib_get_points()

Usage:

points = n : integer → void
points = n ! : integer → void

points : constant

Parameters:

∙ n represents the number of points

Description:

∙ points is a global variable. Its value represents the number of points used in numerical algorithms
of Sollya (namely dirtyinfnorm, dirtyintegral, dirtyfindzeros, plot).

Example 1:

> f=x^2*sin(1/x);
> points=10;
The number of points has been set to 10.
> dirtyfindzeros(f, [0;1]);
[|0, 0.31830988618379067153776752674502872406891929148092|]
> points=100;
The number of points has been set to 100.
> dirtyfindzeros(f, [0;1]);
[|0, 2.4485375860291590118289809749617594159147637806224e-2, 3.97887357729738339
42220940843128590508614911435115e-2, 4.54728408833986673625382181064326748669884
70211559e-2, 5.3051647697298445256294587790838120678153215246819e-2, 6.366197723
6758134307553505349005744813783858296184e-2, 7.957747154594766788444188168625718
101722982287023e-2, 0.106103295394596890512589175581676241356306430493638, 0.159
15494309189533576888376337251436203445964574046, 0.31830988618379067153776752674
502872406891929148092|]

See also: dirtyinfnorm (8.43), dirtyintegral (8.44), dirtyfindzeros (8.42), plot (8.128), diam (8.39),
prec (8.135)

8.131 postscript
Name: postscript

special value for commands plot and externalplot

Library names:
sollya_obj_t sollya_lib_postscript()
int sollya_lib_is_postscript(sollya_obj_t)

Description:

∙ postscript is a special value used in commands plot and externalplot to save the result of the
command in a postscript file.

∙ As any value it can be affected to a variable and stored in lists.

158

Example 1:

> savemode=postscript;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.63), plot (8.128), file (8.66), postscriptfile (8.132)

8.132 postscriptfile
Name: postscriptfile

special value for commands plot and externalplot

Library names:
sollya_obj_t sollya_lib_postscriptfile()
int sollya_lib_is_postscriptfile(sollya_obj_t)

Description:

∙ postscriptfile is a special value used in commands plot and externalplot to save the result of
the command in a data file and a postscript file.

∙ As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscriptfile;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.63), plot (8.128), file (8.66), postscript (8.131)

8.133 ^
Name: ^

power function

Library names:
sollya_obj_t sollya_lib_pow(sollya_obj_t, sollya_obj_t)
sollya_obj_t sollya_lib_build_function_pow(sollya_obj_t, sollya_obj_t)
#define SOLLYA_POW(x,y) sollya_lib_build_function_pow((x), (y))

Usage:

function1 ^ function2 : (function, function) → function
interval1 ^ interval2 : (range, range) → range

interval1 ^ constant : (range, constant) → range
interval1 ^ constant : (constant, range) → range

Parameters:

∙ function1 and function2 represent functions

∙ interval1 and interval2 represent intervals (ranges)

∙ constant represents a constant or constant expression

Description:

∙ ^ represents the power (function) on reals. The expression function1 ^ function2 stands for the
function composed of the power function and the two functions function1 and function2, where
function1 is the base and function2 the exponent. If function2 is a constant integer, ^ is defined
on negative values of function1. Otherwise ^ is defined as 𝑒𝑦·ln 𝑥.

159

∙ Note that whenever several ^ are composed, the priority goes to the last .̂ This corresponds to the
natural way of thinking when a tower of powers is written on a paper. Thus, 2^3^5 is read as 235

and is interpreted as 2(35).

∙ ^ can be used for interval arithmetic on intervals (ranges). ^ will evaluate to an interval that safely
encompasses all images of the power function with arguments varying in the given intervals. If the
intervals given contain points where the power function is not defined, infinities and NaNs will be
produced in the output interval. Any combination of intervals with intervals or constants (resp.
constant expressions) is supported. However, it is not possible to represent families of functions
using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

> 5 ^ 2;
25

Example 2:

> x ^ 2;
x^2

Example 3:

> 3 ^ (-5);
4.1152263374485596707818930041152263374485596707819e-3

Example 4:

> (-3) ^ (-2.5);
NaN

Example 5:

> diff(sin(x) ^ exp(x));
sin(x)^exp(x) * ((cos(x) * exp(x)) / sin(x) + exp(x) * log(sin(x)))

Example 6:

> 2^3^5;
1.4134776518227074636666380005943348126619871175005e73
> (2^3)^5;
32768
> 2^(3^5);
1.4134776518227074636666380005943348126619871175005e73

Example 7:

> [1;2] ^ [3;4];
[1;16.0001]
> [1;2] ^ 17;
[1;131072]
> 13 ^ [-4;17];
[3.501277966457757081334687160813696999404782745702e-5;8650415919381337933]

See also: + (8.129), − (8.111), * (8.113), / (8.48)

160

8.134 powers
Name: powers

special value for global state display

Library names:
sollya_obj_t sollya_lib_powers()
int sollya_lib_is_powers(sollya_obj_t)

Description:

∙ powers is a special value used for the global state display. If the global state display is equal
to powers, all data will be output in dyadic notation with numbers displayed in a Maple and
PARI/GP compatible format.
As any value it can be affected to a variable and stored in lists.

See also: decimal (8.35), dyadic (8.52), hexadecimal (8.82), binary (8.19), display (8.46)

8.135 prec
Name: prec

controls the precision used in numerical computations.

Library names:
void sollya_lib_set_prec_and_print(sollya_obj_t)
void sollya_lib_set_prec(sollya_obj_t)
sollya_obj_t sollya_lib_get_prec()

Description:

∙ prec is a global variable. Its value represents the precision of the floating-point format used in
numerical computations.

∙ Many commands try to adapt their working precision in order to have approximately 𝑛 correct bits
in output, where 𝑛 is the value of prec.

Example 1:

> display=binary!;
> prec=50;
The precision has been set to 50 bits.
> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011011_2 * 2^(2)
> prec=100;
The precision has been set to 100 bits.
> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011010110111001100001100111010001110
11101000100000011011_2 * 2^(2)

See also: evaluate (8.57), diam (8.39)

8.136 precision
Name: precision

returns the precision necessary to represent a number.

Library name:
sollya_obj_t sollya_lib_precision(sollya_obj_t)

Usage:

precision(x) : constant → integer

161

Parameters:

∙ x is a dyadic number.

Description:

∙ precision(x) is by definition |𝑥| if x equals 0, NaN, or Inf.

∙ If x is not zero, it can be uniquely written as 𝑥 = 𝑚·2𝑒 where 𝑚 is an odd integer and 𝑒 is an integer.
precision(x) returns the number of bits necessary to write 𝑚 in binary (i.e. 1 + ⌊log2(𝑚)⌋).

Example 1:

> a=round(Pi,20,RN);
> precision(a);
19
> m=mantissa(a);
> 1+floor(log2(m));
19

Example 2:

> a=255;
> precision(a);
8
> m=mantissa(a);
> 1+floor(log2(m));
8

Example 3:

> a=256;
> precision(a);
1
> m=mantissa(a);
> 1+floor(log2(m));
1

See also: mantissa (8.106), exponent (8.62), round (8.161)

8.137 .:
Name: .:

add an element at the beginning of a list.

Library name:
sollya_obj_t sollya_lib_prepend(sollya_obj_t, sollya_obj_t)

Usage:

x.:L : (any type, list) → list

Parameters:

∙ x is an object of any type.

∙ L is a list (possibly empty).

Description:

∙ .: adds the element x at the beginning of the list L.

162

∙ Note that since x may be of any type, it can be in particular a list.

Example 1:

> 1.:[|2,3,4|];
[|1, 2, 3, 4|]

Example 2:

> [|1,2,3|].:[|4,5,6|];
[|[|1, 2, 3|], 4, 5, 6|]

Example 3:

> 1.:[||];
[|1|]

See also: :. (8.8), @ (8.28)

8.138 print
Name: print

prints an expression

Usage:

print(expr1,...,exprn) : (any type,..., any type) → void
print(expr1,...,exprn) > filename : (any type,..., any type, string) → void
print(expr1,...,exprn) >> filename : (any type,...,any type, string) → void

Parameters:

∙ expr represents an expression

∙ filename represents a character sequence indicating a file name

Description:

∙ print(expr1,...,exprn) prints the expressions expr1 through exprn separated by spaces and followed
by a newline.
If a second argument filename is given after a single ">", the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ">>" is given, the output will be appended to the file filename.
The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).
Remark that if one of the expressions expri given in argument is of type string, the character
sequence expri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by double quotes ("). Nevertheless, escape sequences used upon defining
character sequences are interpreted immediately.

Example 1:

> print(x + 2 + exp(sin(x)));
x + 2 + exp(sin(x))
> print("Hello","world");
Hello world
> print("Hello","you", 4 + 3, "other persons.");
Hello you 7 other persons.

163

Example 2:

> print("Hello");
Hello
> print([|"Hello"|]);
[|"Hello"|]
> s = "Hello";
> print(s,[|s|]);
Hello [|"Hello"|]
> t = "Hello\tyou";
> print(t,[|t|]);
Hello you [|"Hello\tyou"|]

Example 3:

> print(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))

Example 4:

> print(x + 2 + exp(sin(x))) >> "foo.sol";

Example 5:

164

> display = decimal;
Display mode is decimal numbers.
> a = evaluate(sin(pi * x), 0.25);
> b = evaluate(sin(pi * x), [0.25; 0.25 + 1b-50]);
> print(a);
0.70710678118654752440084436210484903928483593768847
> display = binary;
Display mode is binary numbers.
> print(a);
1.011010100000100111100110011001111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 2^(-1)
> display = hexadecimal;
Display mode is hexadecimal numbers.
> print(a);
0x1.6a09e667f3bcc908b2fb1366ea957d3e3adec1751p-1
> display = dyadic;
Display mode is dyadic numbers.
> print(a);
33070006991101558613323983488220944360067107133265b-165
> display = powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> print(a);
33070006991101558613323983488220944360067107133265 * 2^(-165)
> display = decimal;
Display mode is decimal numbers.
> midpointmode = off;
Midpoint mode has been deactivated.
> print(b);
[0.70710678118654752440084436210484903928483593768845;0.707106781186549497437217
82517557347782646274417049]
> midpointmode = on;
Midpoint mode has been activated.
> print(b);
0.7071067811865~4/5~
> display = dyadic;
Display mode is dyadic numbers.
> print(b);
[2066875436943847413332748968013809022504194195829b-161;165350034955508254441962
37019385936414432675156571b-164]
> display = decimal;
Display mode is decimal numbers.
> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> fullparentheses = off;
Full parentheses mode has been deactivated.
> print(x + x * ((x + 1) + 1));
x + x * (x + 1 + 1)
> fullparentheses = on;
Full parentheses mode has been activated.
> print(x + x * ((x + 1) + 1));
x + (x * ((x + 1) + 1))

See also: write (8.198), printexpansion (8.140), printdouble (8.139), printsingle (8.141), printxml
(8.142), readfile (8.152), autosimplify (8.16), display (8.46), midpointmode (8.109), fullparenthe-
ses (8.72), evaluate (8.57), rationalmode (8.150)

165

8.139 printdouble
Name: printdouble

prints a constant value as a hexadecimal double precision number

Library name:
void sollya_lib_printdouble(sollya_obj_t)

Usage:

printdouble(constant) : constant → void

Parameters:

∙ constant represents a constant

Description:

∙ Prints a constant value as a hexadecimal number on 16 hexadecimal digits. The hexadecimal
number represents the integer equivalent to the 64 bit memory representation of the constant
considered as a double precision number.
If the constant value does not hold on a double precision number, it is first rounded to the nearest
double precision number before displayed. A warning is displayed in this case.

Example 1:

> printdouble(3);
0x4008000000000000

Example 2:

> prec=100!;
> verbosity = 1!;
> printdouble(exp(5));
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation to 100 bits will be used.

Warning: rounding down occurred before printing a value as a double.
0x40628d389970338f

See also: printsingle (8.141), printexpansion (8.140), double (8.49)

8.140 printexpansion
Name: printexpansion

prints a polynomial in Horner form with its coefficients written as a expansions of double precision
numbers

Library name:
void sollya_lib_printexpansion(sollya_obj_t)

Usage:

printexpansion(polynomial) : function → void

Parameters:

∙ polynomial represents the polynomial to be printed

Description:

166

∙ The command printexpansion prints the polynomial polynomial in Horner form writing its coef-
ficients as expansions of double precision numbers. The double precision numbers themselves are
displayed in hexadecimal memory notation (see printdouble).
If some of the coefficients of the polynomial polynomial are not floating-point constants but constant
expressions, they are evaluated to floating-point constants using the global precision prec. If a
rounding occurs in this evaluation, a warning is displayed.
If the exponent range of double precision is not sufficient to display all the mantissa bits of a
coefficient, the coefficient is displayed rounded and a warning is displayed.
If the argument polynomial does not a polynomial, nothing but a warning or a newline is displayed.
Constants can be displayed using printexpansion since they are polynomials of degree 0.

Example 1:

> printexpansion(roundcoefficients(taylor(exp(x),5,0),[|DD...|]));
0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x * ((0
x3fc5555555555555 + 0x3c65555555555555) + x * ((0x3fa5555555555555 + 0x3c4555555
5555555) + x * (0x3f81111111111111 + 0x3c01111111111111)))))

Example 2:

> printexpansion(remez(exp(x),5,[-1;1]));
(0x3ff0002eec90e5a6 + 0x3c9ea6a6a0087757 + 0xb8eb3e644ef44998) + x * ((0x3ff0002
8358fd3ac + 0x3c8ffa7d96c95f7a + 0xb91da9809b13dd54 + 0x35c0000000000000) + x *
((0x3fdff2d7e6a9fea5 + 0x3c74460e4c0e4fe2 + 0x38fcd1b6b4e85bb0 + 0x3590000000000
000) + x * ((0x3fc54d6733b4839e + 0x3c6654e4d8614a44 + 0xb905c7a26b66ea92 + 0xb5
98000000000000) + x * ((0x3fa66c209b7150a8 + 0x3c34b1bba8f78092 + 0xb8c75f6eb90d
ae02 + 0x3560000000000000) + x * (0x3f81e554242ab128 + 0xbc23e920a76e760c + 0x38
c0589c2cae6caf + 0x3564000000000000)))))

Example 3:

> verbosity = 1!;
> prec = 3500!;
> printexpansion(pi);
(0x400921fb54442d18 + 0x3ca1a62633145c07 + 0xb92f1976b7ed8fbc + 0x35c4cf98e80417
7d + 0x32631d89cd9128a5 + 0x2ec0f31c6809bbdf + 0x2b5519b3cd3a431b + 0x27e8158536
f92f8a + 0x246ba7f09ab6b6a9 + 0xa0eedd0dbd2544cf + 0x1d779fb1bd1310ba + 0x1a1a63
7ed6b0bff6 + 0x96aa485fca40908e + 0x933e501295d98169 + 0x8fd160dbee83b4e0 + 0x8c
59b6d799ae131c + 0x08f6cf70801f2e28 + 0x05963bf0598da483 + 0x023871574e69a459 +
0x8000000005702db3 + 0x8000000000000000)
Warning: the expansion is not complete because of the limited exponent range of
double precision.
Warning: rounding occurred while printing.

See also: printdouble (8.139), horner (8.85), print (8.138), prec (8.135), remez (8.155), taylor
(8.185), roundcoefficients (8.162), fpminimax (8.71), implementpoly (8.88)

8.141 printsingle
Name: printsingle

prints a constant value as a hexadecimal single precision number

Library name:
void sollya_lib_printsingle(sollya_obj_t)

Usage:

printsingle(constant) : constant → void

167

Parameters:

∙ constant represents a constant

Description:

∙ Prints a constant value as a hexadecimal number on 8 hexadecimal digits. The hexadecimal number
represents the integer equivalent to the 32 bit memory representation of the constant considered
as a single precision number.
If the constant value does not hold on a single precision number, it is first rounded to the nearest
single precision number before it is displayed. A warning is displayed in this case.

Example 1:

> printsingle(3);
0x40400000

Example 2:

> prec=100!;
> verbosity = 1!;
> printsingle(exp(5));
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation to 100 bits will be used.

Warning: rounding up occurred before printing a value as a single.
0x431469c5

See also: printdouble (8.139), single (8.172)

8.142 printxml
Name: printxml

prints an expression as an MathML-Content-Tree

Library names:
void sollya_lib_printxml(sollya_obj_t)
void sollya_lib_printxml_newfile(sollya_obj_t, sollya_obj_t)
void sollya_lib_printxml_appendfile(sollya_obj_t, sollya_obj_t)

Usage:

printxml(expr) : function → void
printxml(expr) > filename : (function, string) → void

printxml(expr) > > filename : (function, string) → void

Parameters:

∙ expr represents a functional expression

∙ filename represents a character sequence indicating a file name

Description:

∙ printxml(expr) prints the functional expression expr as a tree of MathML Content Definition
Markups. This XML tree can be re-read in external tools or by usage of the readxml command.
If a second argument filename is given after a single >, the MathML tree is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double > > is given, the output will be appended to the file filename.

Example 1:

168

> printxml(x + 2 + exp(sin(x)));

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated by sollya: http://sollya.org/ -->
<!-- syntax: printxml(...); example: printxml(x^2-2*x+5); -->
<?xml-stylesheet type="text/xsl" href="http://sollya.org/mathmlc2p-web.xsl"?>
<?xml-stylesheet type="text/xsl" href="mathmlc2p-web.xsl"?>
<!-- This stylesheet allows direct web browsing of MathML-c XML files (http:// o
r file://) -->

<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<annotation-xml encoding="MathML-Content">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<apply>
<plus/>
<apply>
<plus/>
<ci> x </ci>
<cn type="integer" base="10"> 2 </cn>
</apply>
<apply>
<exp/>
<apply>
<sin/>
<ci> x </ci>
</apply>
</apply>
</apply>
</apply>
</lambda>
</annotation-xml>
<annotation encoding="sollya/text">(x + 1b1) + exp(sin(x))</annotation>
</semantics>
</math>

Example 2:

> printxml(x + 2 + exp(sin(x))) > "foo.xml";

Example 3:

> printxml(x + 2 + exp(sin(x))) >> "foo.xml";

See also: readxml (8.153), print (8.138), write (8.198)

8.143 proc
Name: proc

defines a Sollya procedure

Usage:

proc(formal parameter1, formal parameter2,..., formal parameter n) { procedure body } : void →
procedure

169

proc(formal parameter1, formal parameter2,..., formal parameter n) { procedure body return
expression; } : void → procedure

proc(formal list parameter = ...) { procedure body } : void → procedure
proc(formal list parameter = ...) { procedure body return expression; } : void → procedure

Parameters:

∙ formal parameter1, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

∙ formal list parameter represents an identifier used as a formal parameter for the list of an arbitrary
number of parameters

∙ procedure body represents the imperative statements in the body of the procedure

∙ expression represents the expression proc shall evaluate to

Description:

∙ The proc keyword allows for defining procedures in the Sollya language. These procedures are
common Sollya objects that can be applied to actual parameters after definition. Upon such an
application, the Sollya interpreter applies the actual parameters to the formal parameters formal
parameter1 through formal parameter n (resp. builds up the list of arguments and applies it to
the list formal list parameter) and executes the procedure body. The procedure applied to actual
parameters evaluates then to the expression expression in the return statement after the procedure
body or to void, if no return statement is given (i.e. a return void statement is implicitly given).

∙ Sollya procedures defined by proc have no name. They can be bound to an identifier by assign-
ing the procedure object a proc expression produces to an identifier. However, it is possible to
use procedures without giving them any name. For instance, Sollya procedures, i.e. procedure
objects, can be elements of lists. They can even be given as an argument to other internal Sollya
procedures. See also procedure on this subject.

∙ Upon definition of a Sollya procedure using proc, no type check is performed. More precisely,
the statements in procedure body are merely parsed but not interpreted upon procedure definition
with proc. Type checks are performed once the procedure is applied to actual parameters or to
void. At this time, if the procedure was defined using several different formal parameters formal
parameter 1 through formal parameter n, it is checked whether the number of actual parameters
corresponds to the number of formal parameters. If the procedure was defined using the syntax for
a procedure with an arbitrary number of parameters by giving a formal list parameter, the number
of actual arguments is not checked but only a list formal list parameter of appropriate length is
built up. Type checks are further performed upon execution of each statement in procedure body
and upon evaluation of the expression expression to be returned.
Procedures defined by proc containing a quit or restart command cannot be executed (i.e. ap-
plied). Upon application of a procedure, the Sollya interpreter checks beforehand for such a
statement. If one is found, the application of the procedure to its arguments evaluates to error.
A warning is displayed. Remark that in contrast to other type or semantic correctness checks, this
check is really performed before interpreting any other statement in the body of the procedure.

∙ Through the var keyword it is possible to declare local variables and thus to have full support
of recursive procedures. This means a procedure defined using proc may contain in its procedure
body an application of itself to some actual parameters: it suffices to assign the procedure (object)
to an identifier with an appropriate name.

∙ Sollya procedures defined using proc may return other procedures. Further procedure body may
contain assignments of locally defined procedure objects to identifiers. See var for the particular
behaviour of local and global variables.

170

∙ The expression expression returned by a procedure is evaluated with regard to Sollya commands,
procedures and external procedures. Simplification may be performed. However, an application of
a procedure defined by proc to actual parameters evaluates to the expression expression that may
contain the free global variable or that may be composed.

Example 1:

> succ = proc(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
{
nop;
return (n) + (1);
}

Example 2:

> add = proc(m,n) { var res; res := m + n; return res; };
> add(5,6);
11
> add;
proc(m, n)
{
var res;
res := (m) + (n);
return res;
}
> verbosity = 1!;
> add(3);
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> add(true,false);
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
Warning: the given expression or command could not be handled.
error

Example 3:

> succ = proc(n) { return n + 1; };
> succ(5);
6
> succ(x);
1 + x

Example 4:

171

> hey = proc() { print("Hello world."); };
> hey();
Hello world.
> print(hey());
Hello world.
void
> hey;
proc()
{
print("Hello world.");
return void;
}

Example 5:

> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };

> fac(5);
120
> fac(11);
39916800
> fac;
proc(n)
{
var res;
if (n) == (0) then
res := 1
else
res := (n) * (fac((n) - (1)));
return res;
}

Example 6:

> myprocs = [| proc(m,n) { return m + n; }, proc(m,n) { return m - n; } |];
> (myprocs[0])(5,6);
11
> (myprocs[1])(5,6);
-1
> succ = proc(n) { return n + 1; };
> pred = proc(n) { return n - 1; };
> applier = proc(p,n) { return p(n); };
> applier(succ,5);
6
> applier(pred,5);
4

Example 7:

172

> verbosity = 1!;
> myquit = proc(n) { print(n); quit; };
> myquit;
proc(n)
{
print(n);
quit;
return void;
}
> myquit(5);
Warning: a quit or restart command may not be part of a procedure body.
The procedure will not be executed.
Warning: an error occurred while executing a procedure.
Warning: the given expression or command could not be handled.
error

Example 8:

> printsucc = proc(n) { var succ; succ = proc(n) { return n + 1; }; print("Succe
ssor of",n,"is",succ(n)); };
> printsucc(5);
Successor of 5 is 6

Example 9:

> makeadd = proc(n) { var add; print("n =",n); add = proc(m,n) { return n + m; }
; return add; };
> makeadd(4);
n = 4
proc(m, n)
{
nop;
return (n) + (m);
}
> (makeadd(4))(5,6);
n = 4
11

Example 10:

173

> sumall = proc(L = ...) { var acc, i; acc = 0; for i in L do acc = acc + i; ret
urn acc; };
> sumall;
proc(L = ...)
{
var acc, i;
acc = 0;
for i in L do
acc = (acc) + (i);
return acc;
}
> sumall();
0
> sumall(2);
2
> sumall(2,5);
7
> sumall(2,5,7,9,16);
39
> sumall @ [|1,...,10|];
55

See also: return (8.158), externalproc (8.64), void (8.196), quit (8.147), restart (8.157), var (8.194),
@ (8.28), bind (8.20), getbacktrace (8.76), error (8.56)

8.144 procedure
Name: procedure

defines and assigns a Sollya procedure

Usage:

procedure identifier(formal parameter1, formal parameter2,..., formal parameter n) { procedure body }
: void → void

procedure identifier(formal parameter1, formal parameter2,..., formal parameter n) { procedure body
return expression; } : void → void

procedure identifier(formal list parameter = ...) { procedure body } : void → void
procedure identifier(formal list parameter = ...) { procedure body return expression; } : void → void

Parameters:

∙ identifier represents the name of the procedure to be defined and assigned

∙ formal parameter1, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

∙ formal list parameter represents an identifier used as a formal parameter for the list of an arbitrary
number of parameters

∙ procedure body represents the imperative statements in the body of the procedure

∙ expression represents the expression procedure shall evaluate to

Description:

∙ The procedure keyword allows for defining and assigning procedures in the Sollya language. It is
an abbreviation to a procedure definition using proc with the same formal parameters, procedure
body and return-expression followed by an assignment of the procedure (object) to the identifier
identifier. In particular, all rules concerning local variables declared using the var keyword apply
for procedure.

174

Example 1:

> procedure succ(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
{
nop;
return (n) + (1);
}

Example 2:

> procedure myprint(L = ...) { var i; for i in L do i; };
> myprint("Lyon","Nancy","Beaverton","Coye-la-Foret","Amberg","Nizhny Novgorod",
"Cluj-Napoca");
Lyon
Nancy
Beaverton
Coye-la-Foret
Amberg
Nizhny Novgorod
Cluj-Napoca

See also: proc (8.143), var (8.194), bind (8.20), getbacktrace (8.76)

8.145 QD
Name: QD

short form for quad

See also: quad (8.146)

8.146 quad
Names: quad, QD

rounding to the nearest IEEE 754 quad (binary128).

Library names:
sollya_obj_t sollya_lib_quad(sollya_obj_t)
sollya_obj_t sollya_lib_quad_obj()
int sollya_lib_is_quad_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_quad(sollya_obj_t)
#define SOLLYA_QD(x) sollya_lib_build_function_quad(x)

Description:

∙ quad is both a function and a constant.

∙ As a function, it rounds its argument to the nearest IEEE 754 quad precision (i.e. IEEE754-2008
binary128) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

∙ As a constant, it symbolizes the quad precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round and roundcoefficients. It is not supported for
implementpoly. See the corresponding help pages for examples.

175

Example 1:

> display=binary!;
> QD(0.1);
1.100110011001100110011001100110011001100110011001100110011001100110011001100110
011001100110011001100110011001101_2 * 2^(-4)
> QD(4.17);
1.000010101110000101000111101011100001010001111010111000010100011110101110000101
000111101011100001010001111010111_2 * 2^(2)
> QD(1.011_2 * 2^(-16493));
1.1_2 * 2^(-16493)

See also: halfprecision (8.80), single (8.172), double (8.49), doubleextended (8.51), doubledouble
(8.50), tripledouble (8.191), roundcoefficients (8.162), implementpoly (8.88), fpminimax (8.71),
round (8.161), printsingle (8.141)

8.147 quit
Name: quit

quits Sollya

Usage:

quit : void → void

Description:

∙ The command quit, when executed, stops the execution of a Sollya script and leaves the Sollya
interpreter unless the quit command is executed in a Sollya script read into a main Sollya script
by execute or #include.
Upon exiting the Sollya interpreter, all state is thrown away, all memory is deallocated, all bound
libraries are unbound and the temporary files produced by plot and externalplot are deleted.
If the quit command does not lead to a halt of the Sollya interpreter, a warning is displayed.

Example 1:

> quit;

See also: restart (8.157), execute (8.58), plot (8.128), externalplot (8.63), return (8.158)

8.148 range
Name: range

keyword representing a range type

Library name:
SOLLYA_EXTERNALPROC_TYPE_RANGE

Usage:

range : type type

Description:

∙ range represents the range type for declarations of external procedures by means of externalproc.
Remark that in contrast to other indicators, type indicators like range cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.64), boolean (8.21), constant (8.29), function (8.73), integer (8.92), list
of (8.100), string (8.176), object (8.120)

176

8.149 rationalapprox
Name: rationalapprox

returns a fraction close to a given number.

Library name:
sollya_obj_t sollya_lib_rationalapprox(sollya_obj_t, sollya_obj_t)

Usage:

rationalapprox(x,n) : (constant, integer) → function

Parameters:

∙ x is a number to approximate.

∙ n is a integer (representing a format).

Description:

∙ rationalapprox(x,n) returns a constant function of the form 𝑎/𝑏 where 𝑎 and 𝑏 are integers.
The value 𝑎/𝑏 is an approximation of x. The quality of this approximation is determined by the
parameter n that indicates the number of correct bits that 𝑎/𝑏 should have.

∙ The command is not safe in the sense that it is not ensured that the error between 𝑎/𝑏 and x is
less than 2−𝑛.

∙ The following algorithm is used: x is first rounded downwards and upwards to a format of n bits,
thus obtaining an interval [𝑥𝑙, 𝑥𝑢]. This interval is then developed into a continued fraction as
far as the representation is the same for every elements of [𝑥𝑙, 𝑥𝑢]. The corresponding fraction is
returned.

∙ Since rational numbers are not a primitive object of Sollya, the fraction is returned as a constant
function. This can be quite amazing, because Sollya immediately simplifies a constant function
by evaluating it when the constant has to be displayed. To avoid this, you can use print (that
displays the expression representing the constant and not the constant itself) or the commands
numerator and denominator.

Example 1:

> pi10 = rationalapprox(Pi,10);
> pi50 = rationalapprox(Pi,50);
> pi100 = rationalapprox(Pi,100);
> print(pi10, ": ", dirtysimplify(floor(-log2(abs(pi10-Pi)/Pi))), "bits.");
3.140625 : 11 bits.
> print(pi50, ": ", dirtysimplify(floor(-log2(abs(pi50-Pi)/Pi))), "bits.");
85563208 / 27235615 : 51 bits.
> print(pi100, ": ", dirtysimplify(floor(-log2(abs(pi100-Pi)/Pi))), "bits.");
4422001152019829 / 1407566683404023 : 100 bits.

Example 2:

> a=0.1;
> b=rationalapprox(a,4);
> numerator(b); denominator(b);
1
10
> print(dirtysimplify(floor(-log2(abs((b-a)/a)))), "bits.");
166 bits.

See also: print (8.138), numerator (8.119), denominator (8.38), rationalmode (8.150)

177

8.150 rationalmode
Name: rationalmode

global variable controlling if rational arithmetic is used or not.

Library names:
void sollya_lib_set_rationalmode_and_print(sollya_obj_t)
void sollya_lib_set_rationalmode(sollya_obj_t)
sollya_obj_t sollya_lib_get_rationalmode()

Usage:

rationalmode = activation value : on|off → void
rationalmode = activation value ! : on|off → void

rationalmode : on|off

Parameters:

∙ activation value controls if rational arithmetic should be used or not

Description:

∙ rationalmode is a global variable. When its value is off, which is the default, Sollya will
not use rational arithmetic to simplify expressions. All computations, including the evaluation
of constant expressions given on the Sollya prompt, will be performed using floating-point and
interval arithmetic. Constant expressions will be approximated by floating-point numbers, which
are in most cases faithful roundings of the expressions, when shown at the prompt.

∙ When the value of the global variable rationalmode is on, Sollya will use rational arithmetic
when simplifying expressions. Constant expressions, given at the Sollya prompt, will be simplified
to rational numbers and displayed as such when they are in the set of the rational numbers. Other-
wise, flaoting-point and interval arithmetic will be used to compute a floating-point approximation,
which is in most cases a faithful rounding of the constant expression.

Example 1:

> rationalmode=off!;
> 19/17 + 3/94;
1.1495619524405506883604505632040050062578222778473
> rationalmode=on!;
> 19/17 + 3/94;
1837 / 1598

Example 2:

> rationalmode=off!;
> exp(19/17 + 3/94);
3.1568097739551413675470920894482427634032816281442
> rationalmode=on!;
> exp(19/17 + 3/94);
3.1568097739551413675470920894482427634032816281442

See also: on (8.123), off (8.122), numerator (8.119), denominator (8.38), simplify (8.170), ratio-
nalapprox (8.149), autosimplify (8.16)

8.151 RD
Name: RD

constant representing rounding-downwards mode.

Library names:

178

sollya_obj_t sollya_lib_round_down()
int sollya_lib_is_round_down(sollya_obj_t)

Description:

∙ RD is used in command round to specify that the value 𝑥 must be rounded to the greatest
floating-point number 𝑦 such that 𝑦 ≤ 𝑥.

Example 1:

> display=binary!;
> round(Pi,20,RD);
1.1001001000011111101_2 * 2^(1)

See also: RZ (8.166), RU (8.165), RN (8.160), round (8.161), floor (8.70)

8.152 readfile
Name: readfile

reads the content of a file into a string variable

Usage:

readfile(filename) : string → string

Parameters:

∙ filename represents a character sequence indicating a file name

Description:

∙ readfile opens the file indicated by filename, reads it and puts its contents in a character sequence
of type string that is returned.
If the file indicated by filename cannot be opened for reading, a warning is displayed and readfile
evaluates to an error variable of type error.

Example 1:

> print("Hello world") > "myfile.txt";
> t = readfile("myfile.txt");
> t;
Hello world

Example 2:

> verbosity=1!;
> readfile("afile.txt");
Warning: the file "afile.txt" could not be opened for reading.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

See also: parse (8.125), execute (8.58), write (8.198), print (8.138), bashexecute (8.18), error
(8.56)

179

8.153 readxml
Name: readxml

reads an expression written as a MathML-Content-Tree in a file

Library name:
sollya_obj_t sollya_lib_readxml(sollya_obj_t)

Usage:

readxml(filename) : string → function | error

Parameters:

∙ filename represents a character sequence indicating a file name

Description:

∙ readxml(filename) reads the first occurrence of a lambda application with one bounded variable on
applications of the supported basic functions in file filename and returns it as a Sollya functional
expression.
If the file filename does not contain a valid MathML-Content tree, readxml tries to find an "an-
notation encoding" markup of type "sollya/text". If this annotation contains a character sequence
that can be parsed by parse, readxml returns that expression. Otherwise readxml displays a
warning and returns an error variable of type error.

Example 1:

> readxml("readxmlexample.xml");
2 + x + exp(sin(x))

See also: printxml (8.142), readfile (8.152), parse (8.125), error (8.56)

8.154 relative
Name: relative

indicates a relative error for externalplot, fpminimax or supnorm

Library names:
sollya_obj_t sollya_lib_relative()
int sollya_lib_is_relative(sollya_obj_t)

Usage:

relative : absolute|relative

Description:

∙ The use of relative in the command externalplot indicates that during plotting in externalplot
a relative error is to be considered.
See externalplot for details.

∙ Used with fpminimax, relative indicates that fpminimax must try to minimize the relative
error.
See fpminimax for details.

∙ When given in argument to supnorm, relative indicates that a relative error is to be considered
for supremum norm computation.
See supnorm for details.

Example 1:

180

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",absolute,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.63), fpminimax (8.71), absolute (8.2), bashexecute (8.18), supnorm
(8.180)

8.155 remez
Name: remez

computes the minimax of a function on an interval.

Library names:
sollya_obj_t sollya_lib_remez(sollya_obj_t, sollya_obj_t, sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_remez(sollya_obj_t, sollya_obj_t, sollya_obj_t,

va_list)

Usage:

remez(f, n, range, w, quality, bounds) : (function, integer, range, function, constant, range) → function
remez(f, L, range, w, quality, bounds) : (function, list, range, function, constant, range) → function

Parameters:

∙ f is the function to be approximated

∙ n is the degree of the polynomial that must approximate f

∙ L is a list of integers or a list of functions and indicates the basis for the approximation of f

∙ range is the interval where the function must be approximated

∙ w (optional) is a weight function. Default is 1.

∙ quality (optional) is a parameter that controls the quality of the returned polynomial p, with respect
to the exact minimax 𝑝⋆. Default is 1e-5.

∙ bounds (optional) is a parameter that allows the user to make the algorithm stop earlier, whenever
a given accuracy is reached or a given accuracy is proved unreachable. Default is [0, +∞].

Description:

∙ remez computes an approximation of the function 𝑓 with respect to the weight function 𝑤 on the
interval range. More precisely, it searches 𝑝 such that ‖𝑝𝑤 − 𝑓‖∞ is (almost) minimal among all 𝑝
of a certain form. The norm is the infinity norm, e.g. ‖𝑔‖∞ = max{|𝑔(𝑥)|, 𝑥 ∈ range}.

∙ If 𝑤 = 1 (the default case), it consists in searching the best polynomial approximation of 𝑓 with
respect to the absolute error. If 𝑓 = 1 and 𝑤 is of the form 1/𝑔, it consists in searching the best
polynomial approximation of 𝑔 with respect to the relative error.

∙ If 𝑛 is given, 𝑝 is searched among the polynomials with degree not greater than 𝑛. If L is given
and is a list of integers, 𝑝 is searched as a linear combination of monomials 𝑋𝑘 where 𝑘 belongs to
L. In the case when L is a list of integers, it may contain ellipses but cannot be end-elliptic. If L is
given and is a list of functions 𝑔𝑘, 𝑝 is searched as a linear combination of the 𝑔𝑘. In that case L
cannot contain ellipses. It is the user responsibility to check that the 𝑔𝑘 are linearly independent
over the interval range. Moreover, the functions 𝑤 · 𝑔𝑘 must be at least twice differentiable over
range. If these conditions are not fulfilled, the algorithm might fail or even silently return a result
as if it successfully found the minimax, though the returned 𝑝 is not optimal.

181

∙ The polynomial is obtained by a convergent iteration called Remez’ algorithm (and an extension
of this algorithm, due to Stiefel). The algorithm computes a sequence 𝑝1, . . . , 𝑝𝑘, . . . such that
𝑒𝑘 = ‖𝑝𝑘𝑤 − 𝑓‖∞ converges towards the optimal value 𝑒. The algorithm is stopped when the
relative error between 𝑒𝑘 and 𝑒 is less than quality.

∙ The optional argument bounds is an interval [𝜀ℓ, 𝜀𝑢] with the following behavior:

– if, during the algorithm, we manage to prove that 𝜀𝑢 is unreachable, we stop the algorithm
returning the last computed polynomial.

– if, during the algorithm, we obtain a polynomial with an error smaller than 𝜀ℓ, we stop the
algorithm returning that polynomial.

– otherwise we loop until we find an optimal polynomial with the required quality, as usual.

Examples of use:
[0, +∞] (compute the optimal polynomial with the required quality)
[𝜀𝑢] (stops as soon as a polynomial achieving 𝜀𝑢 is obtained or as soon as such a polynomial is
proved not to exist).
[0, 𝜀𝑢] (finds the optimal polynomial, but provided that its error is smaller than 𝜀𝑢).
[𝜀ℓ, +∞] (stops as soon as a polynomial achieving 𝜀ℓ is obtained. If such a polynomial does not
exist, returns the optimal polynomial).

Example 1:

> p = remez(exp(x),5,[0;1]);
> degree(p);
5
> dirtyinfnorm(p-exp(x),[0;1]);
1.1295698151096148707171193829266077607222634589363e-6

Example 2:

> p = remez(1,[|0,2,4,6,8|],[0,Pi/4],1/cos(x));
> canonical=on!;
> p;
0.99999999994393732180959690352543887130348096061124 + -0.4999999957155685776877
2053063721544670949467222259 * x^2 + 4.16666132334736330099410594805702758701132
20089059e-2 * x^4 + -1.3886529147145693651355523880319714051047635695061e-3 * x^
6 + 2.4372679177224179934800328511009205218114284220126e-5 * x^8

Example 3:

> p1 = remez(exp(x),5,[0;1],default,1e-5);
> p2 = remez(exp(x),5,[0;1],default,1e-10);
> p3 = remez(exp(x),5,[0;1],default,1e-15);
> dirtyinfnorm(p1-exp(x),[0;1]);
1.1295698151096148707171193829266077607222634589363e-6
> dirtyinfnorm(p2-exp(x),[0;1]);
1.12956980227478675612619255125474525171079325793124e-6
> dirtyinfnorm(p3-exp(x),[0;1]);
1.12956980227478675612619255125474525171079325793124e-6

Example 4:

182

> L = [|exp(x), sin(x), cos(x)-1, sin(x^3)|];
> g = (2^x-1)/x;
> p1 = remez(g, L, [-1/16;1/16]);
> p2 = remez(g, 3, [-1/16;1/16]);
> dirtyinfnorm(p1 - g, [-1/16;1/16]);
9.8841323829271038137685646777951687620288462194746e-8
> dirtyinfnorm(p2 - g, [-1/16;1/16]);
2.54337800593461418356437401152248866818783932027105e-9

Example 5:

> f = sin(x);
> I = [-3b-5;-1b-1074];
> time(popt = remez(1, [|1, 3, 4, 5, 7, 8, 9|], I, 1/f));
0.165646661999999999999999999999999999995895879399697
> time(p1 = remez(1, [|1, 3, 4, 5, 7, 8, 9|], I, 1/f, default, [0, 1b-73]));
0.12470077599999999999999999999999999999795672675522
> time(p2 = remez(1, [|1, 3, 4, 5, 7, 8, 9|], I, 1/f, default, [3b-72, +@Inf@]))
;
0.137036127999999999999999999999999999989962799427707
> dirtyinfnorm(popt/f-1, I);
2.06750931454112835098093903810531156576504665659064e-22
> dirtyinfnorm(p1/f-1, I);
2.49711266837493110470637913808914046704452778960875e-22
> dirtyinfnorm(p2/f-1, I);
5.4567247553615435246376977231253834265248756996947e-22
> 1b-73;
1.05879118406787542383540312584955245256423950195312e-22
> 3b-72;
6.3527471044072525430124187550973147153854370117187e-22

See also: dirtyinfnorm (8.43), infnorm (8.91), fpminimax (8.71), guessdegree (8.79), taylorform
(8.186), taylor (8.185)

8.156 rename
Name: rename

rename the free variable.

Library name:
void sollya_lib_name_free_variable(const char *)

Usage:

rename(ident1,ident2) : void

Parameters:

∙ ident1 is the current name of the free variable.

∙ ident2 is a fresh name.

Description:

∙ rename permits a change of the name of the free variable. Sollya can handle only one free variable
at a time. The first time in a session that an unbound name is used in a context where it can be
interpreted as a free variable, the name is used to represent the free variable of Sollya. In the
following, this name can be changed using rename.

∙ Be careful: if ident2 has been set before, its value will be lost. Use the command isbound to know
if ident2 is already used or not.

183

∙ If ident1 is not the current name of the free variable, an error occurs.

∙ If rename is used at a time when the name of the free variable has not been defined, ident1 is
just ignored and the name of the free variable is set to ident2.

∙ It is always possible to use the special keyword _x_ to denote the free variable. Hence ident1 can
be _x_.

Example 1:

> f=sin(x);
> f;
sin(x)
> rename(x,y);
> f;
sin(y)

Example 2:

> a=1;
> f=sin(x);
> rename(x,a);
> a;
a
> f;
sin(a)

Example 3:

> verbosity=1!;
> f=sin(x);
> rename(y, z);
Warning: the current free variable is named "x" and not "y". Can only rename the
free variable.

The last command will have no effect.
> rename(_x_, z);
Information: the free variable has been renamed from "x" to "z".

Example 4:

> verbosity=1!;
> rename(x,y);
Information: the free variable has been named "y".
> isbound(x);
false
> isbound(y);
true

See also: isbound (8.94)

8.157 restart
Name: restart

brings Sollya back to its initial state

Usage:

restart : void → void

Description:

184

∙ The command restart brings Sollya back to its initial state. All current state is abandoned, all
libraries unbound and all memory freed.
The restart command has no effect when executed inside a Sollya script read into a main Sollya
script using execute. It is executed in a Sollya script included by a #include macro.
Using the restart command in nested elements of imperative programming like for or while loops
is possible. Since in most cases abandoning the current state of Sollya means altering a loop
invariant, warnings for the impossibility of continuing a loop may follow unless the state is rebuilt.

Example 1:

> print(exp(x));
exp(x)
> a = 3;
> restart;
The tool has been restarted.
> print(x);
x
> a;
Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "a" as "x".
x

Example 2:

> print(exp(x));
exp(x)
> for i from 1 to 10 do {

print(i);
if (i == 5) then restart;

};
1
2
3
4
5
The tool has been restarted.
Warning: the tool has been restarted inside a for loop.
The for loop will no longer be executed.

Example 3:

185

> print(exp(x));
exp(x)
> a = 3;
> for i from 1 to 10 do {

print(i);
if (i == 5) then {

restart;
i = 7;

};
};

1
2
3
4
5
The tool has been restarted.
8
9
10
> print(x);
x
> a;
Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "a" as "x".
x

See also: quit (8.147), execute (8.58)

8.158 return
Name: return

indicates an expression to be returned in a procedure

Usage:

return expression : void

Parameters:

∙ expression represents the expression to be returned

Description:

∙ The keyword return allows for returning the (evaluated) expression expression at the end of a
begin-end-block (-block) used as a Sollya procedure body. See proc for further details concerning
Sollya procedure definitions.
Statements for returning expressions using return are only possible at the end of a begin-end-block
used as a Sollya procedure body. Only one return statement can be given per begin-end-block.

∙ If at the end of a procedure definition using proc no return statement is given, a return void
statement is implicitly added. Procedures, i.e. procedure objects, when printed out in Sollya
defined with an implicit return void statement are displayed with this statement explicitly given.

Example 1:

186

> succ = proc(n) { var res; res := n + 1; return res; };
> succ(5);
6
> succ;
proc(n)
{
var res;
res := (n) + (1);
return res;
}

Example 2:

> hey = proc(s) { print("Hello",s); };
> hey("world");
Hello world
> hey;
proc(s)
{
print("Hello", s);
return void;
}

See also: proc (8.143), void (8.196)

8.159 revert
Name: revert

reverts a list.

Library name:
sollya_obj_t sollya_lib_revert(sollya_obj_t)

Usage:

revert(L) : list → list

Parameters:

∙ L is a list.

Description:

∙ revert(L) returns the same list, but with its elements in reverse order.

∙ If L is an end-elliptic list, revert will fail with an error.

Example 1:

> revert([| |]);
[| |]

Example 2:

> revert([|2,3,5,2,1,4|]);
[|4, 1, 2, 5, 3, 2|]

See also: sort (8.174), head (8.81), tail (8.182)

187

8.160 RN
Name: RN

constant representing rounding-to-nearest mode.

Library names:
sollya_obj_t sollya_lib_round_to_nearest()
int sollya_lib_is_round_to_nearest(sollya_obj_t)

Description:

∙ RN is used in command round to specify that the value must be rounded to the nearest repre-
sentable floating-point number.

Example 1:

> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 2^(1)

See also: RD (8.151), RU (8.165), RZ (8.166), round (8.161), nearestint (8.114)

8.161 round
Name: round

rounds a number to a floating-point format.

Library name:
sollya_obj_t sollya_lib_round(sollya_obj_t, sollya_obj_t, sollya_obj_t)

Usage:

round(x,n,mode) : (constant, integer, RN|RZ|RU|RD) → constant
round(x,format,mode) : (constant,

HP|halfprecision|SG|single|D|double|DE|doubleextended|DD|doubledouble|QD|quad|TD|tripledouble,
RN|RZ|RU|RD) → constant

Parameters:

∙ x is a constant to be rounded.

∙ n is the precision of the target format.

∙ format is the name of a supported floating-point format.

∙ mode is the desired rounding mode.

Description:

∙ If used with an integer parameter n, round(x,n,mode) rounds x to a floating-point number with
precision n, according to rounding-mode mode.

∙ If used with a format parameter format, round(x,format,mode) rounds x to a floating-point number
in the floating-point format format, according to rounding-mode mode.

∙ Subnormal numbers are handled for the case when format is one of halfprecision, single, double,
doubleextended, doubledouble, quad or tripledouble. Otherwise, when format is an integer,
round does not take any exponent range into consideration, i.e. typically uses the full exponent
range of the underlying MPFR library.

∙ It is worth mentionning that the result of round does not depend on the current global precision
of Sollya, unless a warning is displayed. As a matter of fact, round rounds the given constant or
constant expression x applying all rules of IEEE 754 correct rounding, unless a warning is displayed.
The result of round is hence the floating-point value of the given precision n or format format
that is nearest to x (resp. just below or just above, depending on mode), computed as if infinite
precision were used for evaluating the constant x, unless a warning is displayed.

188

Example 1:

> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 2^(1)

Example 2:

> printdouble(round(exp(17),53,RU));
0x417709348c0ea4f9
> printdouble(D(exp(17)));
0x417709348c0ea4f9

Example 3:

> display=binary!;
> a=2^(-1100);
> round(a,53,RN);
1_2 * 2^(-1100)
> round(a,D,RN);
0
> double(a);
0

See also: RN (8.160), RD (8.151), RU (8.165), RZ (8.166), halfprecision (8.80), single (8.172),
double (8.49), doubleextended (8.51), doubledouble (8.50), quad (8.146), tripledouble (8.191),
roundcoefficients (8.162), roundcorrectly (8.163), printdouble (8.139), printsingle (8.141), ceil
(8.23), floor (8.70), nearestint (8.114)

8.162 roundcoefficients
Name: roundcoefficients

rounds the coefficients of a polynomial to classical formats.

Library name:
sollya_obj_t sollya_lib_roundcoefficients(sollya_obj_t, sollya_obj_t)

Usage:

roundcoefficients(p,L) : (function, list) → function

Parameters:

∙ p is a function. Usually a polynomial.

∙ L is a list of formats.

Description:

∙ If p is a polynomial and L a list of floating-point formats, roundcoefficients(p,L) rounds each
coefficient of p to the corresponding format in L.

∙ If p is not a polynomial, roundcoefficients does not do anything.

∙ If L contains other elements than HP, halfprecision, SG, single, D, double, DE, doubleex-
tended, DD, doubledouble, QD, quad, TD and tripledouble, an error occurs.

∙ The coefficients in p corresponding to 𝑋𝑖 is rounded to the format L[i]. If L does not contain
enough elements (e.g. if length(L) < degree(p)+1), a warning is displayed. However, the co-
efficients corresponding to an element of L are rounded. The trailing coefficients (that do not
have a corresponding element in L) are kept with their own precision. If L contains too much
elements, the trailing useless elements are ignored. In particular L may be end-elliptic in which
case roundcoefficients has the natural behavior.

189

Example 1:

> p=exp(1) + x*(exp(2) + x*exp(3));
> display=binary!;
> roundcoefficients(p,[|DD,D,D|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100
010000011_2 * 2^(4)))
> roundcoefficients(p,[|DD,D...|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100
010000011_2 * 2^(4)))

Example 2:

> f=sin(exp(1)*x);
> display=binary!;
> f;
sin(x * (1.010110111111000010101000101100010100010101110110100101010011010101011
11110111000101011000100000001001110011110100111100111100011101100010111001110001
01100000111101_2 * 2^(1)))
> roundcoefficients(f,[|D...|]);
sin(x * (1.010110111111000010101000101100010100010101110110100101010011010101011
11110111000101011000100000001001110011110100111100111100011101100010111001110001
01100000111101_2 * 2^(1)))

Example 3:

> p=exp(1) + x*(exp(2) + x*exp(3));
> verbosity=1!;
> display=binary!;
> roundcoefficients(p,[|DD,D|]);
Warning: the number of the given formats does not correspond to the degree of th
e given polynomial.
Warning: the 0th coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.
Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.
Warning: the 1th coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.
Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.
Warning: rounding may have happened.
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100
01000001011111001011010100101111011111110001010011011101000100110000111010001110
010000010110000101100000111001011100101001_2 * 2^(4)))

See also: halfprecision (8.80), single (8.172), double (8.49), doubleextended (8.51), doubledouble
(8.50), quad (8.146), tripledouble (8.191), fpminimax (8.71), remez (8.155), implementpoly (8.88),
subpoly (8.177)

190

8.163 roundcorrectly
Name: roundcorrectly

rounds an approximation range correctly to some precision

Library name:
sollya_obj_t sollya_lib_roundcorrectly(sollya_obj_t)

Usage:

roundcorrectly(range) : range → constant

Parameters:

∙ range represents a range in which an exact value lies

Description:

∙ Let range be a range of values, determined by some approximation process, safely bounding an
unknown value 𝑣. The command roundcorrectly(range) determines a precision such that for this
precision, rounding to the nearest any value in range yields to the same result, i.e. to the correct
rounding of 𝑣.
If no such precision exists, a warning is displayed and roundcorrectly evaluates to NaN.

Example 1:

> printbinary(roundcorrectly([1.010001_2; 1.0101_2]));
1.01_2
> printbinary(roundcorrectly([1.00001_2; 1.001_2]));
1_2

Example 2:

> roundcorrectly([-1; 1]);
NaN

See also: round (8.161), mantissa (8.106), exponent (8.62), precision (8.136)

8.164 roundingwarnings
Name: roundingwarnings

global variable controlling whether or not a warning is displayed when roundings occur.

Library names:
void sollya_lib_set_roundingwarnings_and_print(sollya_obj_t)
void sollya_lib_set_roundingwarnings(sollya_obj_t)
sollya_obj_t sollya_lib_get_roundingwarnings()

Usage:

roundingwarnings = activation value : on|off → void
roundingwarnings = activation value ! : on|off → void

roundingwarnings : on|off

Parameters:

∙ activation value controls if warnings should be shown or not

Description:

∙ roundingwarnings is a global variable. When its value is on, warnings are emitted in appropriate
verbosity modes (see verbosity) when roundings occur. When its value is off, these warnings are
suppressed.

191

∙ This mode depends on a verbosity of at least 1. See verbosity for more details.

∙ Default is on when the standard input is a terminal and off when Sollya input is read from a file.

Example 1:

> verbosity=1!;
> roundingwarnings = on;
Rounding warning mode has been activated.
> exp(0.1);
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: rounding has happened. The value displayed is a faithful rounding to 16
5 bits of the true result.
1.1051709180756476248117078264902466682245471947375
> roundingwarnings = off;
Rounding warning mode has been deactivated.
> exp(0.1);
1.1051709180756476248117078264902466682245471947375

See also: on (8.123), off (8.122), verbosity (8.195), midpointmode (8.109), rationalmode (8.150),
suppressmessage (8.181), unsuppressmessage (8.193), showmessagenumbers (8.169), getsup-
pressedmessages (8.77)

8.165 RU
Name: RU

constant representing rounding-upwards mode.

Library names:
sollya_obj_t sollya_lib_round_up()
int sollya_lib_is_round_up(sollya_obj_t)

Description:

∙ RU is used in command round to specify that the value 𝑥 must be rounded to the smallest
floating-point number 𝑦 such that 𝑥 ≤ 𝑦.

Example 1:

> display=binary!;
> round(Pi,20,RU);
1.100100100001111111_2 * 2^(1)

See also: RZ (8.166), RD (8.151), RN (8.160), round (8.161), ceil (8.23)

8.166 RZ
Name: RZ

constant representing rounding-to-zero mode.

Library names:
sollya_obj_t sollya_lib_round_towards_zero()
int sollya_lib_is_round_towards_zero(sollya_obj_t)

Description:

∙ RZ is used in command round to specify that the value must be rounded to the closest floating-
point number towards zero. It just consists in truncating the value to the desired format.

192

Example 1:

> display=binary!;
> round(Pi,20,RZ);
1.1001001000011111101_2 * 2^(1)

See also: RD (8.151), RU (8.165), RN (8.160), round (8.161), floor (8.70), ceil (8.23)

8.167 searchgal
Name: searchgal

searches for a preimage of a function such that the rounding the image yields an error smaller than
a constant

Library name:
sollya_obj_t sollya_lib_searchgal(sollya_obj_t, sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, sollya_obj_t)

Usage:

searchgal(function, start, preimage precision, steps, format, error bound) : (function, constant, integer,
integer, HP|halfprecision|SG|single|D|double|DE|doubleextended|DD|doubledouble|QD|quad|TD|tripledouble,

constant) → list
searchgal(list of functions, start, preimage precision, steps, list of format, list of error bounds) : (list,

constant, integer, integer, list, list) → list

Parameters:

∙ function represents the function to be considered

∙ start represents a value around which the search is to be performed

∙ preimage precision represents the precision (discretization) for the eligible preimage values

∙ steps represents the binary logarithm (log2) of the number of search steps to be performed

∙ format represents the format the image of the function is to be rounded to

∙ error bound represents a upper bound on the relative rounding error when rounding the image

∙ list of functions represents the functions to be considered

∙ list of formats represents the respective formats the images of the functions are to be rounded to

∙ list of error bounds represents a upper bound on the relative rounding error when rounding the
image

Description:

∙ The command searchgal searches for a preimage 𝑧 of function function or a list of functions list
of functions such that 𝑧 is a floating-point number with preimage precision significant mantissa
bits and the image 𝑦 of the function, respectively each image 𝑦𝑖 of the functions, rounds to format
format respectively to the corresponding format in list of format with a relative rounding error less
than error bound respectively the corresponding value in list of error bounds. During this search,
at most 2𝑠𝑡𝑒𝑝𝑠 attempts are made. The search starts with a preimage value equal to start. This
value is then increased and decreased by 1 ulp in precision preimage precision until a value is found
or the step limit is reached.
If the search finds an appropriate preimage 𝑧, searchgal evaluates to a list containing this value.
Otherwise, searchgal evaluates to an empty list.

Example 1:

193

> searchgal(log(x),2,53,15,DD,1b-112);
[| |]
> searchgal(log(x),2,53,18,DD,1b-112);
[|2.0000000000384972054234822280704975128173828125|]

Example 2:

> f = exp(x);
> s = searchgal(f,2,53,18,DD,1b-112);
> if (s != [||]) then {

v = s[0];
print("The rounding error is 2^(",evaluate(log2(abs(DD(f)/f - 1)),v),")");

} else print("No value found");
The rounding error is 2^(-112.106878438809380148206984258358542322113874177832
)

Example 3:

> searchgal([|sin(x),cos(x)|],1,53,15,[|D,D|],[|1b-62,1b-60|]);
[|1.00000000000159494639717649988597258925437927246094|]

See also: round (8.161), double (8.49), doubledouble (8.50), tripledouble (8.191), evaluate (8.57),
worstcase (8.197)

8.168 SG
Name: SG

short form for single

See also: single (8.172)

8.169 showmessagenumbers
Name: showmessagenumbers

activates, deactivates or inspects the state variable controlling the displaying of numbers for messages

Library names:
void sollya_lib_set_showmessagenumbers_and_print(sollya_obj_t)
void sollya_lib_set_showmessagenumbers(sollya_obj_t)
sollya_obj_t sollya_lib_get_showmessagenumbers()

Usage:

showmessagenumbers = activation value : on|off → void
showmessagenumbers = activation value ! : on|off → void

showmessagenumbers : on|off

Parameters:

∙ activation value represents on or off, i.e. activation or deactivation

Description:

∙ An assignment showmessagenumbers = activation value, where activation value is one of on
or off, activates respectively deactivates the displaying of numbers for warning and information
messages. Every Sollya warning or information message (that is not fatal to the tool’s execution)
has a message number. By default, these numbers are not displayed when a message is output.
When message number displaying is activated, the message numbers are displayed together with
the message. This allows the user to recover the number of a particular message in order to
suppress resp. unsuppress the displaying of this particular message (see suppressmessage and
unsuppressmessage).

194

∙ The user should be aware of the fact that message number display activation resp. deactivation
through showmessagenumbers does not affect message displaying in general. For instance, even
with message number displaying activated, messages with only displayed when general verbosity
and rounding warning mode are set accordingly.

∙ If the assignment showmessagenumbers = activation value is followed by an exclamation mark,
no message indicating the new state is displayed. Otherwise the user is informed of the new state
of the global mode by an indication.

Example 1:

> verbosity = 1;
The verbosity level has been set to 1.
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
0.1
> showmessagenumbers = on;
Displaying of message numbers has been activated.
> 0.1;
Warning (174): Rounding occurred when converting the constant "0.1" to floating-
point with 165 bits.
If safe computation is needed, try to increase the precision.
0.1
> showmessagenumbers;
on
> showmessagenumbers = off!;
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
0.1

Example 2:

195

> showmessagenumbers = on;
Displaying of message numbers has been activated.
> verbosity = 1;
The verbosity level has been set to 1.
> diff(0.1 * x + 1.5 * x^2);
Warning (174): Rounding occurred when converting the constant "0.1" to floating-
point with 165 bits.
If safe computation is needed, try to increase the precision.
0.1 + x * 3
> verbosity = 0;
The verbosity level has been set to 0.
> diff(0.1 * x + 1.5 * x^2);
0.1 + x * 3
> verbosity = 12;
The verbosity level has been set to 12.
> diff(0.1 * x + 1.5 * x^2);
Warning (174): Rounding occurred when converting the constant "0.1" to floating-
point with 165 bits.
If safe computation is needed, try to increase the precision.
Information (196): formally differentiating a function.
Information (197): differentiating the expression ’0.1 * x + 1.5 * x^2’
Information (195): expression ’0.1 + 2 * 1.5 * x’ has been simplified to express
ion ’0.1 + 3 * x’.
0.1 + x * 3

See also: getsuppressedmessages (8.77), suppressmessage (8.181), unsuppressmessage (8.193),
verbosity (8.195), roundingwarnings (8.164)

8.170 simplify
Name: simplify

simplifies an expression representing a function

Library name:
sollya_obj_t sollya_lib_simplify(sollya_obj_t)

Usage:

simplify(function) : function → function

Parameters:

∙ function represents the expression to be simplified

Description:

∙ The command simplify simplifies the expression given in argument representing the function
function. The command simplify does not endanger the safety of computations even in Sollya’s
floating-point environment: the function returned is mathematically equal to the function function.
Remark that the simplification provided by simplify is not perfect: they may exist simpler equiv-
alent expressions for expressions returned by simplify.

Example 1:

> print(simplify((6 + 2) + (5 + exp(0)) * x));
8 + 6 * x

Example 2:

196

> print(simplify((log(x - x + 1) + asin(1))));
(pi) / 2

Example 3:

> print(simplify((log(x - x + 1) + asin(1)) - (atan(1) * 2)));
(pi) / 2 - (pi) / 4 * 2

See also: dirtysimplify (8.45), autosimplify (8.16), rationalmode (8.150), horner (8.85)

8.171 sin
Name: sin

the sine function.

Library names:
sollya_obj_t sollya_lib_sin(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_sin(sollya_obj_t)
#define SOLLYA_SIN(x) sollya_lib_build_function_sin(x)

Description:

∙ sin is the usual sine function.

∙ It is defined for every real number 𝑥.

See also: asin (8.11), cos (8.30), tan (8.183)

8.172 single
Names: single, SG

rounding to the nearest IEEE 754 single (binary32).

Library names:
sollya_obj_t sollya_lib_single(sollya_obj_t)
sollya_obj_t sollya_lib_single_obj()
int sollya_lib_is_single_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_single(sollya_obj_t)
#define SOLLYA_SG(x) sollya_lib_build_function_single(x)

Description:

∙ single is both a function and a constant.

∙ As a function, it rounds its argument to the nearest IEEE 754 single precision (i.e. IEEE754-2008
binary32) number. Subnormal numbers are supported as well as standard numbers: it is the real
rounding described in the standard.

∙ As a constant, it symbolizes the single precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands round and roundcoefficients. In is not supported for
implementpoly. See the corresponding help pages for examples.

Example 1:

> display=binary!;
> SG(0.1);
1.10011001100110011001101_2 * 2^(-4)
> SG(4.17);
1.000010101110000101001_2 * 2^(2)
> SG(1.011_2 * 2^(-1073));
0

197

See also: halfprecision (8.80), double (8.49), doubleextended (8.51), doubledouble (8.50), quad
(8.146), tripledouble (8.191), roundcoefficients (8.162), implementpoly (8.88), round (8.161),
printsingle (8.141)

8.173 sinh
Name: sinh

the hyperbolic sine function.

Library names:
sollya_obj_t sollya_lib_sinh(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_sinh(sollya_obj_t)
#define SOLLYA_SINH(x) sollya_lib_build_function_sinh(x)

Description:

∙ sinh is the usual hyperbolic sine function: sinh(𝑥) = 𝑒𝑥−𝑒−𝑥

2 .

∙ It is defined for every real number 𝑥.

See also: asinh (8.12), cosh (8.31), tanh (8.184)

8.174 sort
Name: sort

sorts a list of real numbers.

Library name:
sollya_obj_t sollya_lib_sort(sollya_obj_t)

Usage:

sort(L) : list → list
Parameters:

∙ L is a list.

Description:

∙ If L contains only constant values, sort(L) returns the same list, but sorted in increasing order.

∙ If L contains at least one element that is not a constant, the command fails with a type error.

∙ If L is an end-elliptic list, sort will fail with an error.

Example 1:

> sort([| |]);
[| |]
> sort([|2,3,5,2,1,4|]);
[|1, 2, 2, 3, 4, 5|]

See also: revert (8.159)

8.175 sqrt
Name: sqrt

square root.

Library names:
sollya_obj_t sollya_lib_sqrt(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_sqrt(sollya_obj_t)
#define SOLLYA_SQRT(x) sollya_lib_build_function_sqrt(x)

Description:

198

∙ sqrt is the square root, e.g. the inverse of the function square: √
𝑦 is the unique positive 𝑥 such

that 𝑥2 = 𝑦.

∙ It is defined only for 𝑥 in [0; +∞].

8.176 string
Name: string

keyword representing a string type

Library name:
SOLLYA_EXTERNALPROC_TYPE_STRING

Usage:

string : type type

Description:

∙ string represents the string type for declarations of external procedures by means of externalproc.
Remark that in contrast to other indicators, type indicators like string cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.64), boolean (8.21), constant (8.29), function (8.73), integer (8.92), list
of (8.100), range (8.148), object (8.120)

8.177 subpoly
Name: subpoly

restricts the monomial basis of a polynomial to a list of monomials

Library name:
sollya_obj_t sollya_lib_subpoly(sollya_obj_t, sollya_obj_t)

Usage:

subpoly(polynomial, list) : (function, list) → function

Parameters:

∙ polynomial represents the polynomial the coefficients are taken from

∙ list represents the list of monomials to be taken

Description:

∙ subpoly extracts the coefficients of a polynomial polynomial and builds up a new polynomial out
of those coefficients associated to monomial degrees figuring in the list list.
If polynomial represents a function that is not a polynomial, subpoly returns 0.
If list is a list that is end-elliptic, let be 𝑗 the last value explicitly specified in the list. All coefficients
of the polynomial associated to monomials greater or equal to 𝑗 are taken.

Example 1:

> p = taylor(exp(x),5,0);
> s = subpoly(p,[|1,3,5|]);
> print(p);
1 + x * (1 + x * (0.5 + x * (1 / 6 + x * (1 / 24 + x * 1 / 120))))
> print(s);
x * (1 + x^2 * (1 / 6 + x^2 / 120))

Example 2:

199

> p = remez(atan(x),10,[-1,1]);
> subpoly(p,[|1,3,5...|]);
x * (0.99986632941452949026018468446163586361700915018232 + x^2 * (-0.3303047850
2455936362667794059988443130926433421739 + x^2 * (0.1801592931781875646289423703
7824735129130095574422 + x * (2.284558411542478828511250156535857664242985696307
2e-9 + x * (-8.5156349064111377895500552996061844977507560037485e-2 + x * (-2.71
7563409627750199168187692393409435243830189218e-9 + x * (2.084511343071147293732
39910549169872454686955895e-2 + x * 1.108898611811290576571996643868266300817934
00489512e-9)))))))

Example 3:

> subpoly(exp(x),[|1,2,3|]);
0

See also: roundcoefficients (8.162), taylor (8.185), remez (8.155), fpminimax (8.71), implement-
poly (8.88)

8.178 substitute
Name: substitute

replace the occurrences of the free variable in an expression.

Library name:
sollya_obj_t sollya_lib_substitute(sollya_obj_t, sollya_obj_t)

Usage:

substitute(f,g) : (function, function) → function
substitute(f,t) : (function, constant) → constant

Parameters:

∙ f is a function.

∙ g is a function.

∙ t is a real number.

Description:

∙ substitute(f, g) produces the function (𝑓 ∘ 𝑔) : 𝑥 ↦→ 𝑓(𝑔(𝑥)).

∙ substitute(f, t) is the constant 𝑓(𝑡). Note that the constant is represented by its expression until
it has been evaluated (exactly the same way as if you type the expression f replacing instances of
the free variable by t).

∙ If f is stored in a variable F, the effect of the commands substitute(F,g) or substitute(F,t) is
absolutely equivalent to writing F(g) resp. F(t).

Example 1:

> f=sin(x);
> g=cos(x);
> substitute(f,g);
sin(cos(x))
> f(g);
sin(cos(x))

Example 2:

200

> a=1;
> f=sin(x);
> substitute(f,a);
0.84147098480789650665250232163029899962256306079837
> f(a);
0.84147098480789650665250232163029899962256306079837

See also: evaluate (8.57), composepolynomials (8.27)

8.179 sup
Name: sup

gives the upper bound of an interval.

Library name:
sollya_obj_t sollya_lib_sup(sollya_obj_t)

Usage:

sup(I) : range → constant
sup(x) : constant → constant

Parameters:

∙ I is an interval.

∙ x is a real number.

Description:

∙ Returns the upper bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

∙ When called on a real number x, sup behaves like the identity.

Example 1:

> sup([1;3]);
3
> sup(5);
5

Example 2:

> display=binary!;
> I=[0; 0.111110000011111_2];
> sup(I);
1.11110000011111_2 * 2^(-1)
> prec=12!;
> sup(I);
1.11110000011111_2 * 2^(-1)

See also: inf (8.90), mid (8.108), max (8.107), min (8.110)

8.180 supnorm
Name: supnorm

computes an interval bounding the supremum norm of an approximation error (absolute or relative)
between a given polynomial and a function.

Library name:

201

sollya_obj_t sollya_lib_supnorm(sollya_obj_t, sollya_obj_t, sollya_obj_t,
sollya_obj_t, sollya_obj_t)

Usage:

supnorm(p, f, I, errorType, accuracy) : (function, function, range, absolute|relative, constant) → range

Parameters:

∙ p is a polynomial.

∙ f is a function.

∙ I is an interval.

∙ errorType is the type of error to be considered: absolute or relative (see details below).

∙ accuracy is a constant that controls the relative tightness of the interval returned.

Description:

∙ supnorm(p, f, I, errorType, accuracy) tries to compute an interval bound 𝑟 = [ℓ, 𝑢] for the
supremum norm of the error function 𝜀absolute = 𝑝 − 𝑓 (when errorType evaluates to absolute)
or 𝜀relative = 𝑝/𝑓 − 1 (when errorType evaluates to relative), over the interval 𝐼, such that
sup𝑥∈𝐼{|𝜀(𝑥)|} ⊆ 𝑟 and 0 ≤

⃒⃒
𝑢
ℓ − 1

⃒⃒
≤ accuracy. If supnorm succeeds in computing a suitable

interval 𝑟, which it returns, that interval is guaranteed to contain the supremum norm value and to
satisfy the required quality. Otherwise, supnorm evaluates to error, displaying a corresponding
error message. These failure cases are rare and basically happen only for functions which are too
complicated.

∙ Roughly speaking, supnorm is based on taylorform to obtain a higher degree polynomial ap-
proximation for f. This process is coupled with an a posteriori validation of a potential supremum
norm upper bound. The validation is based on showing a certain polynomial the problem gets
reduced to does not vanish. In cases when this process alone does not succeed, for instance because
taylorform is unable to compute a sufficiently good approximation to f, supnorm falls back to
bisecting the working interval until safe supremum norm bounds can be computed with the required
accuracy or until the width of the subintervals becomes less than diam times the original interval
I, in which case supnorm fails.

∙ The algorithm used for supnorm is quite complex, which makes it impossible to explain it here in
further detail. Please find a complete description in the following article:

Sylvain Chevillard, John Harrison, Mioara Joldes, Christoph Lauter
Efficient and accurate computation of upper bounds of approximation errors
Journal of Theoretical Computer Science (TCS), 2010
LIP Research Report number RR LIP2010-2
http://prunel.ccsd.cnrs.fr/ensl-00445343/fr/

∙ In practical cases, supnorm should be able to automatically handle removable discontinuities that
relative errors might have. This means that usually, if f vanishes at a point 𝑥0 in the interval
considered, the approximation polynomial p is designed such that it also vanishes at the same
point with a multiplicity large enough. Hence, although f vanishes, 𝜀relative = 𝑝/𝑓 − 1 may be
defined by continuous extension at such points 𝑥0, called removable discontinuities (see Example 3).

Example 1:

> p = remez(exp(x), 5, [-1;1]);
> midpointmode=on!;
> supnorm(p, exp(x), [-1;1], absolute, 2^(-40));
0.45205513967~0/2~e-4

202

Example 2:

> prec=200!;
> midpointmode=on!;
> d = [1;2];
> f = exp(cos(x)^2 + 1);
> p = remez(1,15,d,1/f,1e-40);
> theta=1b-60;
> prec=default!;
> mode=relative;
> supnorm(p,f,d,mode,theta);
0.30893006200251428~5/6~e-13

Example 3:

> midpointmode=on!;
> mode=relative;
> theta=1b-135;
> d = [-1b-2;1b-2];
> f = expm1(x);
> p = x * (1 + x * (2097145 * 2^(-22) + x * (349527 * 2^(-21) + x * (87609 *
2^(-21) + x * 4369 * 2^(-19)))));
> theta=1b-40;
> supnorm(p,f,d,mode,theta);
0.98349131972~2/3~e-7

See also: dirtyinfnorm (8.43), infnorm (8.91), checkinfnorm (8.25), absolute (8.2), relative (8.154),
taylorform (8.186), autodiff (8.15), numberroots (8.118), diam (8.39)

8.181 suppressmessage
Name: suppressmessage

suppresses the displaying of messages with a certain number

Library names:
void sollya_lib_suppressmessage(sollya_obj_t, ...);
void sollya_lib_v_suppressmessage(sollya_obj_t, va_list);

Usage:

suppressmessage(msg num 1, ..., msg num n) : (integer, ..., integer) → void
suppressmessage(msg list) : list → void

Parameters:

∙ msg num 1 thru msg num n represent the numbers of 𝑛 messages to be suppressed

∙ msg list represents a list with numbers of messages to be suppressed

Description:

∙ The suppressmessage command allows particular warning and information messages to be sup-
pressed from message output, while maintaining global verbosity levels (see verbosity) high. Every
Sollya warning or information message (that is not fatal to the tool’s execution) has a message
number. When these message numbers msg num 1 thru msg num n are given to suppressmes-
sage, the corresponding message are no longer displayed. The unsuppressmessage command
reverts this suppression from output for a particular message.

∙ Instead of giving suppressmessage several message numbers msg num 1 thru msg num n or
calling suppressmessage several times, it is possible to give a whole list msg list of message
numbers to suppressmessage.

203

∙ The user should be aware that suppressmessage presents sticky behavior for the warning and
information messages suppressed from output. This means that even if subsequent calls to sup-
pressmessage occur, a message suppressed by a call to suppressmessage stays suppressed until
it is unsuppressed using unsuppressmessage or the tool is restarted. This behavior distinguishes
message suppression from other global states of the Sollya tool. The user may use getsup-
pressedmessages to obtain a list of currently suppressed messages.

∙ When suppressmessage is used on message numbers that do not exist in the current version of
the tool, a warning is displayed. The call has no other effect though.

Example 1:

> verbosity = 1;
The verbosity level has been set to 1.
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
0.1
> suppressmessage(174);
> 0.1;
0.1
> suppressmessage(407);
> 0.1;
0.1
> verbosity = 12;
The verbosity level has been set to 12.
> showmessagenumbers = on;
Displaying of message numbers has been activated.
> diff(exp(x * 0.1));
Information (196): formally differentiating a function.
Information (197): differentiating the expression ’exp(x * 0.1)’
Information (207): no Horner simplification will be performed because the given
tree is already in Horner form.
exp(x * 0.1) * 0.1
> suppressmessage(207, 196);
> diff(exp(x * 0.1));
Information (197): differentiating the expression ’exp(x * 0.1)’
exp(x * 0.1) * 0.1
> unsuppressmessage(174);
> 0.1;
Warning (174): Rounding occurred when converting the constant "0.1" to floating-
point with 165 bits.
If safe computation is needed, try to increase the precision.
0.1

Example 2:

204

> verbosity = 12;
The verbosity level has been set to 12.
> showmessagenumbers = on;
Displaying of message numbers has been activated.
> diff(exp(x * 0.1));
Warning (174): Rounding occurred when converting the constant "0.1" to floating-
point with 165 bits.
If safe computation is needed, try to increase the precision.
Information (196): formally differentiating a function.
Information (197): differentiating the expression ’exp(x * 0.1)’
Information (207): no Horner simplification will be performed because the given
tree is already in Horner form.
exp(x * 0.1) * 0.1
> suppressmessage([| 174, 207, 196 |]);
> diff(exp(x * 0.1));
Information (197): differentiating the expression ’exp(x * 0.1)’
exp(x * 0.1) * 0.1

See also: getsuppressedmessages (8.77), suppressmessage (8.181), unsuppressmessage (8.193),
verbosity (8.195), roundingwarnings (8.164)

8.182 tail
Name: tail

gives the tail of a list.

Library name:
sollya_obj_t sollya_lib_tail(sollya_obj_t)

Usage:

tail(L) : list → list

Parameters:

∙ L is a list.

Description:

∙ tail(L) returns the list L without its first element.

∙ If L is empty, the command will fail with an error.

∙ tail can also be used with end-elliptic lists. In this case, the result of tail is also an end-elliptic
list.

Example 1:

> tail([|1,2,3|]);
[|2, 3|]
> tail([|1,2...|]);
[|2...|]

See also: head (8.81), revert (8.159)

8.183 tan
Name: tan

the tangent function.

Library names:

205

sollya_obj_t sollya_lib_tan(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_tan(sollya_obj_t)
#define SOLLYA_TAN(x) sollya_lib_build_function_tan(x)

Description:

∙ tan is the tangent function, defined by tan(𝑥) = sin(𝑥)/ cos(𝑥).

∙ It is defined for every real number 𝑥 that is not of the form 𝑛𝜋 + 𝜋/2 where 𝑛 is an integer.

See also: atan (8.13), cos (8.30), sin (8.171)

8.184 tanh
Name: tanh

the hyperbolic tangent function.

Library names:
sollya_obj_t sollya_lib_tanh(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_tanh(sollya_obj_t)
#define SOLLYA_TANH(x) sollya_lib_build_function_tanh(x)

Description:

∙ tanh is the hyperbolic tangent function, defined by tanh(𝑥) = sinh(𝑥)/ cosh(𝑥).

∙ It is defined for every real number 𝑥.

See also: atanh (8.14), cosh (8.31), sinh (8.173)

8.185 taylor
Name: taylor

computes a Taylor expansion of a function in a point

Library name:
sollya_obj_t sollya_lib_taylor(sollya_obj_t, sollya_obj_t, sollya_obj_t)

Usage:

taylor(function, degree, point) : (function, integer, constant) → function

Parameters:

∙ function represents the function to be expanded

∙ degree represents the degree of the expansion to be delivered

∙ point represents the point in which the function is to be developed

Description:

∙ The command taylor returns an expression that is a Taylor expansion of function function in point
point having the degree degree.
Let 𝑓 be the function function, 𝑡 be the point point and 𝑛 be the degree degree. Then, tay-
lor(function,degree,point) evaluates to an expression mathematically equal to

𝑛∑︁
𝑖=0

𝑓 (𝑖) (𝑡)
𝑖! 𝑥𝑖.

In other words, if 𝑝(𝑥) denotes the polynomial returned by taylor, 𝑝(𝑥−𝑡) is the Taylor polynomial
of degree 𝑛 of 𝑓 developed at point 𝑡.
Remark that taylor evaluates to 0 if the degree degree is negative.

206

Example 1:

> print(taylor(exp(x),3,1));
exp(1) + x * (exp(1) + x * (0.5 * exp(1) + x * exp(1) / 6))

Example 2:

> print(taylor(asin(x),7,0));
x * (1 + x^2 * (1 / 6 + x^2 * (3 / 40 + x^2 * 5 / 112)))

Example 3:

> print(taylor(erf(x),6,0));
x * (2 / sqrt(pi) + x^2 * ((2 / sqrt(pi) * (-2)) / 6 + x^2 * (2 / sqrt(pi) * 12)
/ 120))

See also: remez (8.155), fpminimax (8.71), taylorform (8.186)

8.186 taylorform
Name: taylorform

computes a rigorous polynomial approximation (polynomial, interval error bound) for a function,
based on Taylor expansions.

Library names:
sollya_obj_t sollya_lib_taylorform(sollya_obj_t, sollya_obj_t,

sollya_obj_t, ...)
sollya_obj_t sollya_lib_v_taylorform(sollya_obj_t, sollya_obj_t,

sollya_obj_t, va_list)

Usage:

taylorform(f, n, 𝑥0, I, errorType) : (function, integer, constant, range, absolute|relative) → list
taylorform(f, n, 𝑥0, I, errorType) : (function, integer, range, range, absolute|relative) → list

taylorform(f, n, 𝑥0, errorType) : (function, integer, constant, absolute|relative) → list
taylorform(f, n, 𝑥0, errorType) : (function, integer, range, absolute|relative) → list

Parameters:

∙ f is the function to be approximated.

∙ n is the degree of the polynomial that must approximate f.

∙ 𝑥0 is the point (it can be a real number or an interval) where the Taylor exansion of the function
is to be considered.

∙ I is the interval over which the function is to be approximated. If this parameter is omitted, the
behavior is changed (see detailed description below).

∙ errorType (optional) is the type of error to be considered. See the detailed description below.
Default is absolute.

Description:

∙ WARNING: taylorform is a certified command, not difficult to use but not completely straight-
forward to use either. In order to be sure to use it correctly, the reader is invited to carefully read
this documentation entirely.

∙ taylorform computes an approximation polynomial and an interval error bound for function 𝑓 .
More precisely, it returns a list 𝐿 = [𝑝, coeffErrors, Δ] where:

207

– 𝑝 is an approximation polynomial of degree 𝑛 such that 𝑝(𝑥 − 𝑥0) is roughly speaking a
numerical Taylor expansion of 𝑓 at the point 𝑥0.

– coeffsErrors is a list of 𝑛 + 1 intervals. Each interval coeffsErrors[𝑖] contains an enclosure of
all the errors accumulated when computing the 𝑖-th coefficient of 𝑝.

– Δ is an interval that provides a bound for the approximation error between 𝑝 and 𝑓 . Its
significance depends on the errorType considered.

∙ The polynomial 𝑝 and the bound Δ are obtained using Taylor Models principles.

∙ Please note that 𝑥0 can be an interval. In general, it is meant to be a small interval approximating
a non representable value. If 𝑥0 is given as a constant expression, it is first numerically evaluated
(leading to a faithful rounding 𝑥0 at precision prec), and it is then replaced by the (exactly
representable) point-interval [𝑥0, 𝑥0]. In particular, it is not the same to call taylorform with
𝑥0 = pi and with 𝑥0 = [pi], for instance. In general, if the point around which one desires to
compute the polynomial is not exactly representable, one should preferably use a small interval
for 𝑥0.

∙ More formally, the mathematical property ensured by the algorithm may be stated as follows. For
all 𝜉0 in 𝑥0, there exist (small) values 𝜀𝑖 ∈ coeffsErrors[𝑖] such that:
If errorType is absolute, ∀𝑥 ∈ 𝐼, ∃𝛿 ∈ Δ, 𝑓(𝑥) − 𝑝(𝑥 − 𝜉0) =

𝑛∑︀
𝑖=0

𝜀𝑖 (𝑥 − 𝜉0)𝑖 + 𝛿.

If errorType is relative, ∀𝑥 ∈ 𝐼, ∃𝛿 ∈ Δ, 𝑓(𝑥) − 𝑝(𝑥 − 𝜉0) =
𝑛∑︀

𝑖=0
𝜀𝑖 (𝑥 − 𝜉0)𝑖 + 𝛿 (𝑥 − 𝜉0)𝑛+1.

∙ It is also possible to use a large interval for 𝑥0, though it is not obvious to give an intuitive
sense to the result of taylorform in that case. A particular case that might be interesting is
when 𝑥0 = 𝐼 in relative mode. In that case, denoting by 𝑝𝑖 the coefficient of 𝑝 of order 𝑖, the
interval 𝑝𝑖 + coeffsError[𝑖] gives an enclosure of 𝑓 (𝑖)(𝐼)/𝑖!. However, the command autodiff is
more convenient for computing such enclosures.

∙ When the interval 𝐼 is not given, the approximated Taylor polynomial is computed but no remainder
is produced. In that case the returned list is 𝐿 = [𝑝, coeffErrors].

∙ The relative case is especially useful when functions with removable singularities are considered. In
such a case, this routine is able to compute a finite remainder bound, provided that the expansion
point given is the problematic removable singularity point.

∙ The algorithm does not guarantee that by increasing the degree of the approximation, the re-
mainder bound will become smaller. Moreover, it may even become larger due to the dependency
phenomenon present with interval arithmetic. In order to reduce this phenomenon, a possible
solution is to split the definition domain 𝐼 into several smaller intervals.

∙ The command taylor also computes a Taylor polynomial of a function. However it does not provide
a bound on the remainder. Besides, taylor is a somehow symbolic command: each coefficient of
the Taylor polynomial is computed exactly and returned as an expression tree exactly equal to
theoretical value. It is henceforth much more inefficient than taylorform and taylorform should
be preferred if only numercial (yet safe) computations are required. The same difference exists
between commands diff and autodiff.

Example 1:

208

> TL=taylorform(sin(x)/x, 10, 0, [-1,1], relative);
> p=TL[0];
> Delta=TL[2];
> errors=TL[1];
> for epsi in errors do epsi;
[0;0]
[0;0]
[0;5.3455294201843912922810729343029637576303937602101e-51]
[0;0]
[-3.3409558876152445576756705839393523485189961001313e-52;3.34095588761524455767
56705839393523485189961001313e-52]
[0;0]
[-1.04404871487976392427364705748104760891218628129103e-53;1.0440487148797639242
7364705748104760891218628129103e-53]
[0;0]
[-1.63132611699963113167757352731413688892529106451724e-55;1.6313261169996311316
7757352731413688892529106451724e-55]
[0;0]
[-1.91171029335894273243465647732125416670932546623114e-57;1.9117102933589427324
3465647732125416670932546623114e-57]
> p; Delta;
1 + x^2 * (-0.1667 + x^2 * (8.3333
333e-3 + x^2 * (-1.9841269841269841269
84126984126984126984126984127e-4 + x^2 * (2.755731922398589065255731922398589065
2557319223986e-6 + x^2 * (-2.5052108385441718775052108385441718775052108385442e-
8)))))
[-1.6135797443886066084999806203254010793747502812764e-10;1.61357974438860660849
99806203254010793747502812764e-10]

Example 2:

> TL=taylorform(exp(x), 10, 0, [-1,1], absolute);
> p=TL[0];
> Delta=TL[2];
> p; Delta;
1 + x * (1 + x * (0.5 + x * (0.166
7 + x * (4.16668e-2 + x * (8.3333333
33e-3 + x * (1.3888888888888888888888888
888888888888888888888889e-3 + x * (1.9841269841269841269841269841269841269841269
84127e-4 + x * (2.4801587301587301587301587301587301587301587301587e-5 + x * (2.
7557319223985890652557319223985890652557319223986e-6 + x * 2.7557319223985890652
557319223985890652557319223986e-7)))))))))
[-2.3114271964118761944124253418268474583253955510297e-8;2.731266075564247442020
6278018039434042553645532164e-8]

Example 3:

> TL1 = taylorform(exp(x), 10, log2(10), [-1,1], absolute);
> TL2 = taylorform(exp(x), 10, [log2(10)], [-1,1], absolute);
> TL1==TL2;
false

Example 4:

209

> TL1 = taylorform(exp(x), 3, 0, [0,1], relative);
> TL2 = taylorform(exp(x), 3, 0, relative);
> TL1[0]==TL2[0];
true
> TL1[1]==TL2[1];
true
> length(TL1);
3
> length(TL2);
2

Example 5:

> f = exp(cos(x)); x0 = 0;
> TL = taylorform(f, 3, x0);
> T1 = TL[0];
> T2 = taylor(f, 3, x0);
> print(coeff(T1, 2));
-1.35914091422952261768014373567633124887862354685
> print(coeff(T2, 2));
-(0.5 * exp(1))

See also: diff (8.41), autodiff (8.15), taylor (8.185), remez (8.155), chebyshevform (8.24)

8.187 taylorrecursions
Name: taylorrecursions

controls the number of recursion steps when applying Taylor’s rule.

Library names:
void sollya_lib_set_taylorrecursions_and_print(sollya_obj_t)
void sollya_lib_set_taylorrecursions(sollya_obj_t)
sollya_obj_t sollya_lib_get_taylorrecursions()

Usage:

taylorrecursions = n : integer → void
taylorrecursions = n ! : integer → void

taylorrecursions : integer

Parameters:

∙ n represents the number of recursions

Description:

∙ taylorrecursions is a global variable. Its value represents the number of steps of recursion that
are used when applying Taylor’s rule. This rule is applied by the interval evaluator present in the
core of Sollya (and particularly visible in commands like infnorm).

∙ To improve the quality of an interval evaluation of a function 𝑓 , in particular when there are
problems of decorrelation), the evaluator of Sollya uses Taylor’s rule: 𝑓([𝑎, 𝑏]) ⊆ 𝑓(𝑚) + [𝑎 −
𝑚, 𝑏 − 𝑚] · 𝑓 ′([𝑎, 𝑏]) where 𝑚 = 𝑎+𝑏

2 . This rule can be applied recursively. The number of step in
this recursion process is controlled by taylorrecursions.

∙ Setting taylorrecursions to 0 makes Sollya use this rule only once; setting it to 1 makes Sollya
use the rule twice, and so on. In particular: the rule is always applied at least once.

Example 1:

210

> f=exp(x);
> p=remez(f,3,[0;1]);
> taylorrecursions=0;
The number of recursions for Taylor evaluation has been set to 0.
> evaluate(f-p, [0;1]);
[-0.46839364816268368775174657814112460243249079671039;0.46947781754646820647293
019728402934746974652584671]
> taylorrecursions=1;
The number of recursions for Taylor evaluation has been set to 1.
> evaluate(f-p, [0;1]);
[-0.138131114954063839905475752120786856031651747712954;0.1392152843378483586266
5937126369160106890747684927]

See also: hopitalrecursions (8.84), evaluate (8.57), infnorm (8.91)

8.188 TD
Name: TD

short form for tripledouble

See also: tripledouble (8.191)

8.189 time
Name: time

procedure for timing Sollya code.

Usage:

time(code) : code → constant

Parameters:

∙ code is the code to be timed.

Description:

∙ time permits timing a Sollya instruction, resp. a begin-end block of Sollya instructions. The
timing value, measured in seconds, is returned as a Sollya constant (and not merely displayed
as for timing). This permits performing computations of the timing measurement value inside
Sollya.

∙ The extended nop command permits executing a defined number of useless instructions. Taking
the ratio of the time needed to execute a certain Sollya instruction and the time for executing a
nop therefore gives a way to abstract from the speed of a particular machine when evaluating an
algorithm’s performance.

Example 1:

> t = time(p=remez(sin(x),10,[-1;1]));
> write(t,"s were spent computing p = ",p,"\n");
4.8366210999999999999999999999999999998902343311586e-2s were spent computing p =
9.0486898749977990986908851357759191711354777014602e-17 * x^10 + 2.687625951151

23596299959320959141640012683406736586e-6 * x^9 + -2.424797849252131334907323228
9246205727856268698001e-16 * x^8 + -1.983448630209659297012456065035864612261309
37598776e-4 * x^7 + 2.2748214757753544349162426281857910162575492126267e-16 * x^
6 + 8.3333037186560980567697821420813799547276481409702e-3 * x^5 + -8.5747151989
72066974170696130354953131211051121887e-17 * x^4 + -0.16666666138601323707621656
6493953847771564552744173 * x^3 + 1.05699558969863875841493332282097022580493449
058156e-17 * x^2 + 0.99999999973628365676559825181776417246038944720795 * x + (-
3.1206530956601883024316320853642604562810646600878e-19)

211

Example 2:

> write(time({ p=remez(sin(x),10,[-1;1]); write("The error is 2^(", log2(dirtyin
fnorm(p-sin(x),[-1;1])), ")\n"); }), " s were spent\n");
The error is 2^(log2(2.39601979446524486606649528289933482070294808074097e-11))
7.9472044000000000000000000000000000004018615329303e-2 s were spent

Example 3:

> t = time(bashexecute("sleep 10"));
> write(~(t-10),"s of execution overhead.\n");
3.9814599999999999999999999999999994616717656646574e-3s of execution overhead.

Example 4:

> ratio := time(p=remez(sin(x),10,[-1;1]))/time(nop(10));
> write("This ratio = ", ratio, " should somehow be independent of the type of m
achine.\n");
This ratio = 1.41568033301580390523445374661654986884071966148744 should somehow
be independent of the type of machine.

See also: timing (8.190), nop (8.116)

8.190 timing
Name: timing

global variable controlling timing measures in Sollya.

Library names:
void sollya_lib_set_timing_and_print(sollya_obj_t)
void sollya_lib_set_timing(sollya_obj_t)
sollya_obj_t sollya_lib_get_timing()

Usage:

timing = activation value : on|off → void
timing = activation value ! : on|off → void

timing : on|off

Parameters:

∙ activation value controls if timing should be performed or not

Description:

∙ timing is a global variable. When its value is on, the time spent in each command is measured
and displayed (for verbosity levels higher than 1).

Example 1:

> verbosity=1!;
> timing=on;
Timing has been activated.
> p=remez(sin(x),10,[-1;1]);
Information: Remez: computing the quality of approximation spent 4 ms
Information: Remez: computing the quality of approximation spent 4 ms
Information: Remez: computing the quality of approximation spent 4 ms
Information: computing a minimax approximation spent 30 ms
Information: assignment spent 36 ms
Information: full execution of the last parse chunk spent 41 ms

See also: on (8.123), off (8.122), time (8.189)

212

8.191 tripledouble
Names: tripledouble, TD

represents a number as the sum of three IEEE doubles.

Library names:
sollya_obj_t sollya_lib_triple_double(sollya_obj_t)
sollya_obj_t sollya_lib_triple_double_obj()
int sollya_lib_is_triple_double_obj(sollya_obj_t)
sollya_obj_t sollya_lib_build_function_triple_double(sollya_obj_t)
#define SOLLYA_TD(x) sollya_lib_build_function_triple_double(x)

Description:

∙ tripledouble is both a function and a constant.

∙ As a function, it rounds its argument to the nearest number that can be written as the sum of
three double precision numbers.

∙ The algorithm used to compute tripledouble(𝑥) is the following: let 𝑥ℎ = double(𝑥), let 𝑥𝑚 =
double(𝑥 − 𝑥ℎ) and let 𝑥𝑙 = double(𝑥 − 𝑥ℎ − 𝑥𝑚). Return the number 𝑥ℎ + 𝑥𝑚 + 𝑥𝑙. Note that if
the current precision is not sufficient to represent exactly 𝑥ℎ + 𝑥𝑚 + 𝑥𝑙, a rounding will occur and
the result of tripledouble(x) will be useless.

∙ As a constant, it symbolizes the triple-double precision format. It is used in contexts when a
precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See
the corresponding help pages for examples.

Example 1:

> verbosity=1!;
> a = 1+ 2^(-55)+2^(-115);
> TD(a);
1.00000000000000002775557561562891353466491600711096
> prec=110!;
> TD(a);
1.000000000000000027755575615628913534664916007110955975699724

See also: halfprecision (8.80), single (8.172), double (8.49), doubleextended (8.51), doubledouble
(8.50), quad (8.146), roundcoefficients (8.162), implementpoly (8.88), fpminimax (8.71), print-
expansion (8.140)

8.192 true
Name: true

the boolean value representing the truth.

Library names:
sollya_obj_t sollya_lib_true()
int sollya_lib_is_true(sollya_obj_t)

Description:

∙ true is the usual boolean value.

Example 1:

> true && false;
false
> 2>1;
true

See also: false (8.65), && (8.6), || (8.124)

213

8.193 unsuppressmessage
Name: unsuppressmessage

unsuppresses the displaying of messages with a certain number

Library names:
void sollya_lib_unsuppressmessage(sollya_obj_t, ...);
void sollya_lib_v_unsuppressmessage(sollya_obj_t, va_list);

Usage:

unsuppressmessage(msg num 1, ..., msg num n) : (integer, ..., integer) → void
unsuppressmessage(msg list) : list → void

Parameters:

∙ msg num 1 thru msg num n represent the numbers of 𝑛 messages to be suppressed

∙ msg list represents a list with numbers of messages to be suppressed

Description:

∙ The unsuppressmessage command allows particular warning and information messages that have
been suppressed from message output to be unsuppressed, i.e. activated for display again. Every
Sollya warning or information message (that is not fatal to the tool’s execution) has a message
number. When these message numbers msg num 1 thru msg num n are given to unsuppressmes-
sage, the corresponding message are displayed again, as they are by default at according verbosity
levels. Actually, the unsuppressmessage command just reverts the effects of the suppressmes-
sage command.

∙ Instead of giving unsuppressmessage several message numbers msg num 1 thru msg num n or
calling unsuppressmessage several times, it is possible to give a whole list msg list of message
numbers to unsuppressmessage.

∙ The user should be aware that unsuppressmessage presents sticky behavior for the warning and
information messages suppressed from output. In fact, unsuppressmessage just unsuppresses the
warning or information messages given in argument. All other suppressed messages stay suppressed
until they get unsuppressed by subsequent calls to unsuppressmessage or the Sollya tool is
restarted. This behavior distinguishes message suppression from other global states of the Sollya
tool. The user may use getsuppressedmessages to obtain a list of currently suppressed messages.
In particular, in order to unsuppressed all currently suppressed warning or information messages,
the user may feed the output of getsuppressedmessages (a list) into unsuppressmessage.

∙ The user should also note that unsuppressing warning or information messages with unsup-
pressmessage just reverts the effects of the suppressmessage command but that other conditions
exist that affect the actual displaying of a message, such as global verbosity (see verbosity) and
modes like rounding warnings (see roundingwarnings). A message will not just get displayed
because it was unsuppressed with unsuppressmessage.

∙ When unsuppressmessage is used on message numbers that do not exist in the current version
of the tool, a warning is displayed. The call has no other effect though.

Example 1:

214

> verbosity = 1;
The verbosity level has been set to 1.
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
0.1
> suppressmessage(174);
> 0.1;
0.1
> suppressmessage(174);
> 0.1;
0.1

Example 2:

> verbosity = 12;
The verbosity level has been set to 12.
> showmessagenumbers = on;
Displaying of message numbers has been activated.
> diff(exp(x * 0.1));
Warning (174): Rounding occurred when converting the constant "0.1" to floating-
point with 165 bits.
If safe computation is needed, try to increase the precision.
Information (196): formally differentiating a function.
Information (197): differentiating the expression ’exp(x * 0.1)’
Information (207): no Horner simplification will be performed because the given
tree is already in Horner form.
exp(x * 0.1) * 0.1
> suppressmessage([| 174, 207, 196 |]);
> diff(exp(x * 0.1));
Information (197): differentiating the expression ’exp(x * 0.1)’
exp(x * 0.1) * 0.1
> unsuppressmessage([| 174, 196 |]);

Example 3:

> verbosity = 12;
The verbosity level has been set to 12.
> showmessagenumbers = on;
Displaying of message numbers has been activated.
> suppressmessage(207, 387, 390, 388, 391, 196, 195, 197, 205);
> getsuppressedmessages();
[|195, 196, 197, 205, 207, 387, 388, 390, 391|]
> evaluate(x/sin(x) - 1, [-1;1]);
[0;0.8508157176809256179117532413986501934703966550941]
> unsuppressmessage(getsuppressedmessages());
> getsuppressedmessages();
[| |]

See also: getsuppressedmessages (8.77), suppressmessage (8.181), unsuppressmessage (8.193),
verbosity (8.195), roundingwarnings (8.164)

8.194 var
Name: var

declaration of a local variable in a scope

215

Usage:

var identifier1, identifier2,... , identifiern : void

Parameters:

∙ identifier1, identifier2,... , identifiern represent variable identifiers

Description:

∙ The keyword var allows for the declaration of local variables identifier1 through identifiern in a
begin-end-block ({}-block). Once declared as a local variable, an identifier will shadow identifiers
declared in higher scopes and undeclared identifiers available at top-level.
Variable declarations using var are only possible in the beginning of a begin-end-block. Several
var statements can be given. Once another statement is given in a begin-end-block, no more var
statements can be given.
Variables declared by var statements are dereferenced as error until they are assigned a value.

Example 1:

> exp(x);
exp(x)
> a = 3;
> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1
true
5
3
> a;
3

See also: error (8.56), proc (8.143)

8.195 verbosity
Name: verbosity

global variable controlling the amount of information displayed by commands.

Library names:
void sollya_lib_set_verbosity_and_print(sollya_obj_t)
void sollya_lib_set_verbosity(sollya_obj_t)
sollya_obj_t sollya_lib_get_verbosity()

Usage:

verbosity = n : integer → void
verbosity = n ! : integer → void

verbosity : integer

Parameters:

∙ n controls the amount of information to be displayed

Description:

∙ verbosity accepts any integer value. At level 0, commands do not display anything on standard
output. Note that very critical information may however be displayed on standard error.

∙ Default level is 1. It displays important information such as warnings when roundings happen.

∙ For higher levels more information is displayed depending on the command.

216

Example 1:

> verbosity=0!;
> 1.2+"toto";
error
> verbosity=1!;
> 1.2+"toto";
Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> verbosity=2!;
> 1.2+"toto";
Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
Information: the expression or a partial evaluation of it has been the following
:
(1.2) + ("toto")
error

See also: roundingwarnings (8.164), suppressmessage (8.181), unsuppressmessage (8.193), showmes-
sagenumbers (8.169), getsuppressedmessages (8.77)

8.196 void
Name: void

the functional result of a side-effect or empty argument resp. the corresponding type

Library names:
sollya_obj_t sollya_lib_void()
int sollya_lib_is_void(sollya_obj_t)
SOLLYA_EXTERNALPROC_TYPE_VOID

Usage:

void : void | type type

Description:

∙ The variable void represents the functional result of a side-effect or an empty argument. It is used
only in combination with the applications of procedures or identifiers bound through externalproc
to external procedures.
The void result produced by a procedure or an external procedure is not printed at the prompt.
However, it is possible to print it out in a print statement or in complex data types such as lists.
The void argument is implicit when giving no argument to a procedure or an external procedure
when applied. It can nevertheless be given explicitly. For example, suppose that foo is a procedure
or an external procedure with a void argument. Then foo() and foo(void) are correct calls to foo.
Here, a distinction must be made for procedures having an arbitrary number of arguments. In
this case, an implicit void as the only parameter to a call of such a procedure gets converted into
an empty list of arguments, an explicit void gets passed as-is in the formal list of parameters the
procedure receives.

217

∙ void is used also as a type identifier for externalproc. Typically, an external procedure taking
void as an argument or returning void is bound with a signature void − > some type or some
type − > void. See externalproc for more details.

Example 1:

> print(void);
void
> void;

Example 2:

> hey = proc() { print("Hello world."); };
> hey;
proc()
{
print("Hello world.");
return void;
}
> hey();
Hello world.
> hey(void);
Hello world.
> print(hey());
Hello world.
void

Example 3:

> bashexecute("gcc -fPIC -Wall -c externalprocvoidexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocvoidexample externalprocvoidexam
ple.o");
> externalproc(foo, "./externalprocvoidexample", void -> void);
> foo;
foo
> foo();
Hello from the external world.
> foo(void);
Hello from the external world.
> print(foo());
Hello from the external world.
void

Example 4:

> procedure blub(L = ...) { print("Argument list:", L); };
> blub(1);
Argument list: [|1|]
> blub();
Argument list: [| |]
> blub(void);
Argument list: [|void|]

See also: error (8.56), proc (8.143), externalproc (8.64)

218

8.197 worstcase
Name: worstcase

searches for hard-to-round cases of a function

Library names:
void sollya_lib_worstcase(sollya_obj_t, sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, ...)
void sollya_lib_v_worstcase(sollya_obj_t, sollya_obj_t, sollya_obj_t,

sollya_obj_t, sollya_obj_t, va_list)

Usage:

worstcase(function, preimage precision, preimage exponent range, image precision, error bound) :
(function, integer, range, integer, constant) → void

worstcase(function, preimage precision, preimage exponent range, image precision, error bound,
filename) : (function, integer, range, integer, constant, string) → void

Parameters:

∙ function represents the function to be considered

∙ preimage precision represents the precision of the preimages

∙ preimage exponent range represents the exponents in the preimage format

∙ image precision represents the precision of the format the images are to be rounded to

∙ error bound represents the upper bound for the search w.r.t. the relative rounding error

∙ filename represents a character sequence containing a filename

Description:

∙ The worstcase command is deprecated. It searches for hard-to-round cases of a function. The
command searchgal has a comparable functionality.

Example 1:

> worstcase(exp(x),24,[1,2],24,1b-26);
prec = 165
x = 1.99999988079071044921875 f(x) = 7.3890552520751953125 eps = 4
.5998601423446695596184695493764120138001954979037e-9 = 2^(-27.695763)
x = 2 f(x) = 7.38905620574951171875 eps = 1.4456360874967301812222
8379395533417878125150587072e-8 = 2^(-26.043720)

See also: round (8.161), searchgal (8.167), evaluate (8.57)

8.198 write
Name: write

prints an expression without separators

Usage:

write(expr1,...,exprn) : (any type,..., any type) → void
write(expr1,...,exprn) > filename : (any type,..., any type, string) → void
write(expr1,...,exprn) >> filename : (any type,...,any type, string) → void

Parameters:

∙ expr represents an expression

219

∙ filename represents a character sequence indicating a file name

Description:

∙ write(expr1,...,exprn) prints the expressions expr1 through exprn. The character sequences corre-
sponding to the expressions are concatenated without any separator. No newline is displayed at
the end. In contrast to print, write expects the user to give all separators and newlines explicitly.
If a second argument filename is given after a single ">", the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ">>" is given, the output will be appended to the file filename.
The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).
Remark that if one of the expressions expri given in argument is of type string, the character
sequence expri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by quotes ("). Nevertheless, escape sequences used upon defining character
sequences are interpreted immediately.

Example 1:

> write(x + 2 + exp(sin(x)));
> write("Hello\n");
x + 2 + exp(sin(x))Hello
> write("Hello","world\n");
Helloworld
> write("Hello","you", 4 + 3, "other persons.\n");
Helloyou7other persons.

Example 2:

> write("Hello","\n");
Hello
> write([|"Hello"|],"\n");
[|"Hello"|]
> s = "Hello";
> write(s,[|s|],"\n");
Hello[|"Hello"|]
> t = "Hello\tyou";
> write(t,[|t|],"\n");
Hello you[|"Hello\tyou"|]

Example 3:

> write(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))

Example 4:

> write(x + 2 + exp(sin(x))) >> "foo.sol";

See also: print (8.138), printexpansion (8.140), printdouble (8.139), printsingle (8.141), printxml
(8.142), readfile (8.152), autosimplify (8.16), display (8.46), midpointmode (8.109), fullparenthe-
ses (8.72), evaluate (8.57), roundingwarnings (8.164), autosimplify (8.16)

220

8.199 _x_
Name: _x_

universal name for the mathematical free variable.

Library names:
sollya_obj_t sollya_lib_free_variable()
sollya_obj_t sollya_lib_build_function_free_variable()
#define SOLLYA_X_ (sollya_lib_build_function_free_variable())

Description:

∙ _x_ is an identifier that always denotes the mathematical free variable. It cannot be assigned.

∙ Sollya manipulates mathematical functions of a single variable. The first time that a variable
name is used without having been assigned before, this variable name is automatically considered
by Sollya as the name of the free variable. Subsequently, any other unassigned variable name will
be considered as the free variable with a warning making this conversion explicit. This is convenient
for an every-day use of the interactive tool, but it has the drawback that the free variable name can
change from a session to another. There are contexts (e.g., within a procedure, or for doing pattern
matching) when one might want to refer to the free variable regardless of its name in the current
session. For this purpose _x_ is a universal identifier, always available and always denoting the
free variable, whatever its name is in the current context.

Example 1:

> verbosity=1!;
> sin(a);
sin(a)
> b;
Warning: the identifier "b" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "b" as "a".
a
> _x_;
a

Example 2:

> verbosity=1!;
> sin(y);
sin(y)
> f = proc(a) {

return sin(a + _x_);
};

> rename(y,z);
Information: the free variable has been renamed from "y" to "z".
> f(1);
sin(1 + z)

Example 3:

221

> f = sin(y);
> match f with

sin(a) : { print("sin of a with a =", a);
match a with

x : { print("a turns out to be the free variable"); }
default : { print("a is some expression"); };
}

x : { print("Free variable") ; }
default: { print("Something else"); };

sin of a with a = y
a turns out to be the free variable

See also: rename (8.156), isbound (8.94), proc (8.143)

222

9 Appendix: interval arithmetic philosophy in Sollya

Although it is currently based on the MPFI library, Sollya has its own way of interpreting interval
arithmetic when infinities or NaN occur, or when a function is evaluated on an interval containing points
out of its domain, etc. This philosophy may differ from the one applied in MPFI. It is also possible that
the behavior of Sollya does not correspond to the behavior that one would expect, e.g., as a natural
consequence of the IEEE-754 standard.

The topology that we consider is always the usual topology of R = R∪{−∞, +∞}. For any function,
if one of its arguments is empty (respectively NaN), we return empty (respectively NaN).

9.1 Univariate functions
Let 𝑓 be a univariate basic function and 𝐼 an interval. We denote by 𝐽 the result of the interval evaluation
of 𝑓 over 𝐼 in Sollya. If 𝐼 is completely included in the domain of 𝑓 , 𝐽 will usually be the smallest
interval (at the current precision) containing the exact image 𝑓(𝐼). However, in some cases, it may
happen that 𝐽 is not as small as possible. It is guaranteed however, that 𝐽 tends to 𝑓(𝐼) when the
precision of the tool tends to infinity.

When 𝑓 is not defined at some point 𝑥 but is defined on a neighborhood of 𝑥, we consider that the
“value” of 𝑓 at 𝑥 is the convex hull of the limit points of 𝑓 around 𝑥. For instance, consider the evaluation
of 𝑓 = tan on [0, 𝜋]. It is not defined at 𝜋/2 (and only at this point). The limit points of 𝑓 around 𝜋/2
are −∞ and +∞, so, we return [−∞, ∞]. Another example: 𝑓 = sin on [+∞]. The function has no
limit at this point, but all points of [−1, 1] are limit points. So, we return [−1, 1].

Finally, if 𝐼 contains a subinterval on which 𝑓 is not defined, we return [NaN, NaN] (example:√︀
[−1, 2]).

9.2 Bivariate functions
Let 𝑓 be a bivariate function and 𝐼1 and 𝐼2 be intervals. If 𝐼1 = [𝑥] and 𝐼2 = [𝑦] are both point-intervals,
we return the convex hull of the limit points of 𝑓 around (𝑥, 𝑦) if it exists. In particular, if 𝑓 is defined at
(𝑥, 𝑦) we return its value (or a small interval around it, if it is not exactly representable). As an example
[1]/[+∞] returns [0]. Also, [1]/[0] returns [−∞, +∞] (note that Sollya does not consider signed zeros).
If it is not possible to give a meaning to the expression 𝑓(𝐼1, 𝐼2), we return NaN: for instance [0]/[0] or
[0] * [+∞].

If one and only one of the intervals is a point-interval (say 𝐼1 = [𝑥]), we consider the partial function
𝑔 : 𝑦 ↦→ 𝑓(𝑥, 𝑦) and return the value that would be obtained when evaluating 𝑔 on 𝐼2. For instance, in
order to evaluate [0]/𝐼2, we consider the function 𝑔 defined for every 𝑦 ̸= 0 by 𝑔(𝑦) = 0/𝑦 = 0. Hence,
𝑔(𝐼2) = [0] (even if 𝐼2 contains 0, by the argument of limit-points). In particular, please note that
[0]/[−1, 1] returns [0] even though [0]/[0] returns NaN. This rule even holds when 𝑔 can only be defined
as limit points: for instance, in the case 𝐼1/[0] we consider 𝑔 : 𝑥 ↦→ 𝑥/0. This function cannot be defined
stricto sensu, but we can give it a meaning by considering 0 as a limit. Hence 𝑔 is multivalued and its
value is {−∞, +∞} for every 𝑥. Hence, 𝐼1/[0] returns [−∞, +∞] when 𝐼1 is not a point-interval.

Finally, if neither 𝐼1 nor 𝐼2 are point-intervals, we try to give a meaning to 𝑓(𝐼1, 𝐼2) by an argument
of limit-points when possible. For instance [1, 2]/[0, 1] returns [1, +∞].

As a special exception to these rules, [0][0] returns [1].

223

10 Appendix: the Sollya library
10.1 Introduction
The header file of the Sollya library is sollya.h. Its inclusion may provoke the inclusion of other header
files, such as gmp.h, mpfr.h or mpfi.h.

The library provides a virtual Sollya session that is perfectly similar to an interactive session: global
variables such as verbosity, prec, display, midpointmode, etc. are maintained and affect the behavior
of the library, warning messages are displayed when something is not exact, etc. Please notice that the
Sollya library currently is not re-entrant and can only be opened once. A process using the library
must hence not be multi-threaded and is limited to one single virtual Sollya session.

In order to get started with the Sollya library, the first thing to do is hence to initialize this vir-
tual session. This is performed with the sollya_lib_init function. Accordingly, one should close
the session at the end of the program (which has the effect of releasing all the memory used by
Sollya). Please notice that Sollya uses its own allocation functions and registers them to GMP us-
ing the custom allocation functions provided by GMP. Particular precautions should hence be taken
when using the Sollya library in a program that also registers its own functions to GMP: in that case
sollya_lib_init_with_custom_memory_functions should be used instead of sollya_lib_init for
initializing the library. This is discussed in Section 10.19.

In the usual case when Sollya is used in a program that does not register allocation functions to GMP,
a minimal file using the library is hence the following.

#include <sollya.h>

int main(void) {
sollya_lib_init();

/* Functions of the library can be called here */

sollya_lib_close();
return 0;

}

Suppose that this code is saved in a file called foo.c. The compilation is performed as usual without
forgetting to link against libsollya (since the libraries libgmp, libmpfr and libmpfi are dependencies
of Sollya, it might also be necessary to explicitly link against them):

~/% cc foo.c -c
~/% cc foo.o -o foo -lsollya -lmpfi -lmpfr -lgmp

10.2 Sollya object data-type
The library provides a single data type called sollya_obj_t that can contain any Sollya object (a
Sollya object is anything that can be stored in a variable within the interactive tool. See Section 5 of
the present documentation for details). Please notice that sollya_obj_t is in fact a pointer type; this
has two consequences:

∙ NULL is a placeholder that can be used as a sollya_obj_t in some contexts. This placeholder
is particularly useful as an end marker for functions with a variable number of arguments (see
Sections 10.5.4 and 10.17).

∙ An assignment with the “=” sign does not copy an object but only copies the reference to it. In
order to perform a (deep) copy, the sollya_lib_copy_obj() function is available.

Except for a few functions for which the contrary is explicitly specified, the following conventions are
used:

224

∙ A function does not touch its arguments. Hence if sollya_lib_foo is a function of the library, a
call to sollya_lib_foo(a) leaves the object referenced by a unchanged (the notable exceptions to
that rule are the functions containing build in their name, e.g., sollya_lib_build_foo).

∙ A function that returns a sollya_obj_t creates a new object (this means that memory is dynam-
ically allocated for that object). The memory allocated for that object should manually be cleared
when the object is no longer used and all references to it (on the stack) get out of reach, e.g., on
a function return: this is performed by the sollya_lib_clear_obj() function. By convenience
sollya_lib_clear_obj(NULL) is a valid call, which just does nothing.

In general, except if the user perfectly knows what they are doing, the following rules should be
applied (here a and b are C variables of type sollya_obj_t, and sollya_lib_foo and sollya_lib_bar
are functions of the library):

∙ One should never write a = b. Instead, use a = sollya_lib_copy_obj(b).

∙ One should never write a = sollya_lib_foo(a) because one loses the reference to the object
initially referenced by the variable a (which is hence not cleared).

∙ One should never chain function calls such as, e.g., a = sollya_lib_foo(sollya_lib_bar(b))
(the reference to the object created by sollya_lib_bar(b) would be lost and hence not cleared).

∙ A variable a should never be used twice at the left-hand side of the “=” sign (or as an lvalue in
general) without performing sollya_lib_clear_obj(a) in-between.

∙ In an assignment of the form “a = ...”, the right-hand side should always be a function call (i.e.,
something like a = sollya_lib_foo(...);).

Please notice that sollya_lib_close() clears the memory allocated by the virtual Sollya session
but not the objects that have been created and stored in C variables. All the sollya_obj_t created by
function calls should be cleared manually.

We can now write a simple Hello World program using the Sollya library:

#include <sollya.h>

int main(void) {
sollya_obj_t s1, s2, s;
sollya_lib_init();

s1 = sollya_lib_string("Hello ");
s2 = sollya_lib_string("World!");
s = sollya_lib_concat(s1, s2);
sollya_lib_clear_obj(s1);
sollya_lib_clear_obj(s2);

sollya_lib_printf("%b\n", s);
sollya_lib_clear_obj(s);
sollya_lib_close();
return 0;

}

A universal function allows the user to execute any expression, as if it were given at the prompt
of the Sollya tool, and to get a sollya_obj_t containing the result of the evaluation: this function
is sollya_lib_parse_string("some expression here"). This is very convenient, and indeed, any
script written in the Sollya language, could easily be converted into a C program by intensively us-
ing sollya_lib_parse_string. However, this should not be the preferred way if efficiency is targeted
because (as its name suggests) this function uses a parser to decompose its argument, then constructs in-
termediate data structures to store the abstract interpretation of the expression, etc. Low-level functions
are provided for efficiently creating Sollya objects; they are detailed in the next Section.

225

10.3 Conventions in use in the library
The library follows some conventions that are useful to remember:

∙ When a function is a direct transposition of a command or function available in the interactive tool,
it returns a sollya_obj_t. This is true, even when it would sound natural to return, e.g., an int.
For instance sollya_lib_get_verbosity() returns a sollya_obj_t, whose integer value must
then be recovered with sollya_lib_get_constant_as_int. This forces the user to declare (and
clear afterwards) a temporary sollya_obj_t to store the value, but this is the price of homogeneity
in the library.

∙ When a function returns an integer, this integer generally is a boolean in the usual C meaning,
i.e., 0 represents false and any non-zero value represents true. In many cases, the integer returned
by the function indicates a status of success or failure: the convention is “false means failure” and
“true means success”. In case of failure, the convention is that the function did not touch any of
its arguments.

∙ When a function would need to return several things, or when a function would need to return
something together with a status of failure or success, the convention is that pointers are given
as the first arguments of the function. These pointers shall point to valid addresses where the
function will store the results. This can sometimes give obscure signatures, when the function
would in principle returns a pointer and actually takes as argument a pointer to a pointer (this
typically happens when the function allocates a segment of memory and should return a pointer
to that segment of memory).

10.4 Displaying Sollya objects and numerical values
Within the interactive tool, the most simple way of displaying the content of a variable or the value of an
expression is to write the name of the variable or the expression, followed by the character “;”. As a result,
Sollya evaluates the expression or the variable and displays the result. Alternatively, a set of objects
can be displayed the same way, separating the objects with commas. In library mode, the same behav-
ior can be reproduced using the function void sollya_lib_autoprint(sollya_obj_t, ...). Please
notice that this function has a variable number of arguments: they are all displayed, until an argument
equal to NULL is found. The NULL argument is mandatory, even if only one object shall be displayed
(the function has no other way to know if other arguments follow or not). So, if only one argument
should be displayed, the correct function call is sollya_lib_autoprint(arg, NULL). Accordingly, if
two arguments should be displayed, the function call is sollya_lib_autoprint(arg1, arg2, NULL),
etc. The function void sollya_lib_v_autoprint(sollya_obj_t, va_list) is the same, but it takes
a va_list argument instead of a variable number of arguments.

Further, there is another way of printing formatted strings containing Sollya objects, using a printf-
like syntax. Eight functions are provided, namely:

∙ sollya_lib_printf, sollya_lib_v_printf,

∙ sollya_lib_fprintf, sollya_lib_v_fprintf,

∙ sollya_lib_sprintf, sollya_lib_v_sprintf,

∙ sollya_lib_snprintf and sollya_lib_v_snprintf.

Each one of these functions overloads the usual function (respectively, printf, vprintf, fprintf,
vfprintf, sprintf, vsprintf, snprintf and vsnprintf). The full syntax of conversions specifiers
supported with the usual functions is handled (please note that the style using ’$’ – as in %3$ or %*3$ –
is not handled though. It is not included in the C99 standard anyway). Additionally, the following
conversion specifiers are provided:

∙ %b: corresponds to a sollya_obj_t argument. There is no precision modifier support.

∙ %v: corresponds to a mpfr_t argument. An optional precision modifier can be applied (e.g., %.5v).

∙ %w: corresponds to a mpfi_t argument. An optional precision modifier can be applied (e.g., %.5w).

226

∙ %r: corresponds to a mpq_t argument. There is no precision modifier support.

∙ %k: corresponds to a mpz_t argument. There is no precision modifier support.

When one of the above conversion specifiers is used, the corresponding argument is displayed as it would
be within the interactive tool: i.e., the way the argument is displayed depends on Sollya environment
variables, such as prec, display, midpointmode, etc. When a precision modifier 𝑛 is used, the argument
is first rounded to a binary precision of roughly log2(10) × 𝑛 bits (i.e., roughly equivalent to 𝑛 decimal
digits) before being displayed. As with traditional printf, the precision modifier can be replaced with *
which causes the precision to be determined by an additional int argument.

Flag characters (e.g., ‘#’, ‘0’, etc.) are allowed but have no effect, except flag character ‘-’ that is
supported with its usual meaning of left-aligning the converted value. The full syntax for minimum field
width is supported: it can be given directly as an integer in the format string (e.g., %22b) or it can be
replaced with *, which causes the field width to be determined by an additional int argument. As usual,
a negative field width is taken as a ‘-’ flag followed by a positive width.

As a special (and sometimes convenient) case, %b accepts that its corresponding sollya_obj_t argu-
ment be NULL: in this particular case, the string “NULL” is used in the displayed string. Please notice
that, except for the particular case of NULL, the behavior of sollya_lib_printf is completely undefined
if the argument of %b is not a valid Sollya object.

The sollya_lib_printf functions return an integer with the same meaning as the traditional printf
functions. It indicates the number of characters that have been output (excluding the final \0 character).
Similarly, the conversion specifier %n can be used, even together with the Sollya conversion specifiers
%b, %v, %w, %r and %k. The functions sollya_lib_snprintf and sollya_lib_v_snprintf will never
write more characters than indicated by their size argument (including the final \0 character). If the
output gets truncated due to this limit, they will return the number of characters (excluding the final
\0 character) that would have been output if there had not been any truncation. In case of error, all
sollya_lib_printf functions return a negative value.

10.5 Creating Sollya objects
Sollya objects conceptually fall into one of five categories: numerical constants (e.g., 1 or 1.5), func-
tional expressions (they might contain numerical constants, e.g., sin(cos(𝑥 + 1.5))), other simple objects
(intervals, strings, built-in constants such as dyadic, etc.), lists of objects (e.g., [|1, "Hello"|]) and
structures (e.g., {.a = 1; .b = "Hello"}).

10.5.1 Numerical constants

Table 1 lists the different functions available to construct numerical constants. A Sollya constant
is always created without rounding (whatever the value of global variable prec is at the moment of
the function call): a sufficient precision is always allocated so that the constant is stored exactly. All
these functions return a constant floating-point number except sollya_lib_constant_from_mpq that
may return a constant expression if the value of the rational number given as argument is not exactly
representable as a floating-point number at some precision. The returned expression is of the form 𝑝/𝑞
in this case.

The objects returned by these functions are newly allocated and copies of the argument. For in-
stance, after the instruction a = sollya_lib_constant(b), the user will eventually have to clear a
(with sollya_lib_clear(a)) and b (with mpfr_clear(b)).

The function sollya_lib_constant_from_double (or more conveniently its shortcut SOLLYA_CONST)
is probably the preferred way for constructing numerical constants. As the name indicates it, its argument
is a double; however, due to implicit casting in C, it is perfectly possible to give an int as argument:
it will be converted into a double (without rounding if the integer fits on 53 bits) before being passed
to SOLLYA_CONST. On the contrary, the user should be aware of the fact that if decimal non-integer
constants are given, C rules of rounding (to double) are applied, regardless of the setting of the Sollya
precision variable prec.

227

Table 1: Creating numerical constants (Creates a fresh sollya_obj_t. Conversion is always exact)

Type of the argument Name of the function Shortcut macro
double sollya_lib_constant_from_double(x) SOLLYA_CONST(x)
uint64_t sollya_lib_constant_from_uint64(x) SOLLYA_CONST_UI64(x)
int64_t sollya_lib_constant_from_int64(x) SOLLYA_CONST_SI64(x)
int sollya_lib_constant_from_int(x) N/A
mpq_t sollya_lib_constant_from_mpq(x) N/A
mpz_t sollya_lib_constant_from_mpz(x) N/A
mpfr_t sollya_lib_constant(x) N/A

10.5.2 Functional expressions

Functional expressions are built by composition of basic functions with constants and the free mathe-
matical variable. Since it is convenient to build such expressions by chaining function calls, the library
provides functions that “eat up” their arguments (actually embedding them in a bigger expression). The
convention is that functions that eat up their arguments are prefixed by sollya_lib_build_. For the
purpose of building expressions, shortcut macros for the corresponding functions exist. They are all
listed in Table 2.

It is worth mentioning that, although SOLLYA_X_ and SOLLYA_PI are used without parentheses (as
if they denoted constants), they are in fact function calls that create a new object each time they are
used. The absence of parentheses is just more convenient for constructing expressions, such as, e.g.,
SOLLYA_COS(SOLLYA_X_).

For each function of the form sollya_lib_build_function_foo, there exists a function called
sollya_lib_foo. There are two differences between them:

∙ First, sollya_lib_foo does not “eat up” its argument. This can sometimes be useful, e.g., if one
has an expression stored in a variable a and one wants to build the expression exp(a) without
loosing the reference to the expression represented by a.

∙ Second, while sollya_lib_build_function_foo mechanically constructs an expression, function
sollya_lib_foo also evaluates it, as far as this is possible without rounding.
For instance, after the instructions a = SOLLYA_CONST(0); b = sollya_lib_exp(a); the vari-
able b contains the number 1, whereas it would have contained the expression "exp(0)" if it had
been created by b = sollya_lib_build_function_exp(a).

Actually, sollya_lib_foo has exactly the same behavior as writing an expression at the prompt within
the interactive tool. In particular, it is possible to give a range as an argument to sollya_lib_foo: the
returned object will be the result of the evaluation of function foo on that range by interval arithmetic.
In contrast, trying to use sollya_lib_build_function_foo on a range would result in a typing error.

Alternatively, one may create functional expressions with the functions
int sollya_lib_construct_function(sollya_obj_t *res, sollya_base_function_t type, ...)
int sollya_lib_v_construct_function(sollya_obj_t *, sollya_base_function_t, va_list).
The advantage of these functions with respect to the others presented above lies in the fact that they
offer a way to create any functional expression, the basic function that one wants to construct be-
ing provided with the argument type. Since these functions are indeed doing the exact contrary of
sollya_lib_decompose_function, they are described in details in the corresponding Section 10.12.

10.5.3 Other simple objects

Other simple objects are created with functions listed in Table 3. The functions with a name of the form
sollya_lib_something follow the same convention as sollya_lib_constant: they build a new object
from a copy of their argument, and the conversion is always exact, whatever the value of prec is.

Please note that in the interactive tool, D either denotes the discrete mathematical function that
maps a real number to its closest double number, or is used as a symbolic constant to indicate that the

228

Table 2: Building functional expressions (Eats up arguments, embedding them in the returned object.)

Name in the interactive tool Function to build it Shortcut macro
x sollya_lib_build_function_free_variable() SOLLYA_X_
pi sollya_lib_build_function_pi() SOLLYA_PI

e1 + e2 sollya_lib_build_function_add(e1, e2) SOLLYA_ADD(e1, e2)
e1 - e2 sollya_lib_build_function_sub(e1, e2) SOLLYA_SUB(e1, e2)
e1 * e2 sollya_lib_build_function_mul(e1, e2) SOLLYA_MUL(e1, e2)
e1 / e2 sollya_lib_build_function_div(e1, e2) SOLLYA_DIV(e1, e2)

pow(e1, e2) sollya_lib_build_function_pow(e1, e2) SOLLYA_POW(e1, e2)
-e sollya_lib_build_function_neg(e) SOLLYA_NEG(e)

sqrt(e) sollya_lib_build_function_sqrt(e) SOLLYA_SQRT(e)
abs(e) sollya_lib_build_function_abs(e) SOLLYA_ABS(e)
erf(e) sollya_lib_build_function_erf(e) SOLLYA_ERF(e)
erfc(e) sollya_lib_build_function_erfc(e) SOLLYA_ERFC(e)
exp(e) sollya_lib_build_function_exp(e) SOLLYA_EXP(e)

expm1(e) sollya_lib_build_function_expm1(e) SOLLYA_EXPM1(e)
log(e) sollya_lib_build_function_log(e) SOLLYA_LOG(e)
log2(e) sollya_lib_build_function_log2(e) SOLLYA_LOG2(e)
log10(e) sollya_lib_build_function_log10(e) SOLLYA_LOG10(e)
log1p(e) sollya_lib_build_function_log1p(e) SOLLYA_LOG1P(e)
sin(e) sollya_lib_build_function_sin(e) SOLLYA_SIN(e)
cos(e) sollya_lib_build_function_cos(e) SOLLYA_COS(e)
tan(e) sollya_lib_build_function_tan(e) SOLLYA_TAN(e)
asin(e) sollya_lib_build_function_asin(e) SOLLYA_ASIN(e)
acos(e) sollya_lib_build_function_acos(e) SOLLYA_ACOS(e)
atan(e) sollya_lib_build_function_atan(e) SOLLYA_ATAN(e)
sinh(e) sollya_lib_build_function_sinh(e) SOLLYA_SINH(e)
cosh(e) sollya_lib_build_function_cosh(e) SOLLYA_COSH(e)
tanh(e) sollya_lib_build_function_tanh(e) SOLLYA_TANH(e)
asinh(e) sollya_lib_build_function_asinh(e) SOLLYA_ASINH(e)
acosh(e) sollya_lib_build_function_acosh(e) SOLLYA_ACOSH(e)
atanh(e) sollya_lib_build_function_atanh(e) SOLLYA_ATANH(e)

D(e), double(e) sollya_lib_build_function_double(e) SOLLYA_D(e)
SG(e), single(e) sollya_lib_build_function_single(e) SOLLYA_SG(e)
QD(e), quad(e) sollya_lib_build_function_quad(e) SOLLYA_QD(e)

HP(e), halfprecision(e) sollya_lib_build_function_halfprecision(e) SOLLYA_HP(e)
DD(e), doubledouble(e) sollya_lib_build_function_double_double(e) SOLLYA_DD(e)
TD(e), tripledouble(e) sollya_lib_build_function_triple_double(e) SOLLYA_TD(e)

DE(e), doubleextended(e) sollya_lib_build_function_doubleextended(e) SOLLYA_DE(e)
ceil(e) sollya_lib_build_function_ceil(e) SOLLYA_CEIL(e)
floor(e) sollya_lib_build_function_floor(e) SOLLYA_FLOOR(e)

nearestint(e) sollya_lib_build_function_nearestint(e) SOLLYA_NEARESTINT(e)

229

double format must be used (as an argument of round for instance). In the library, they are completely
distinct objects, the mathematical function being obtained with sollya_lib_build_function_double
and the symbolic constant with sollya_lib_double_obj. The same holds for other formats (DD, SG,
etc.)

Table 3: Creating Sollya objects from scratch (Returns a new sollya_obj_t)

Name in the interactive tool Function to create it
on sollya_lib_on();
off sollya_lib_off();

dyadic sollya_lib_dyadic();
powers sollya_lib_powers();
binary sollya_lib_binary();

hexadecimal sollya_lib_hexadecimal();
file sollya_lib_file();

postscript sollya_lib_postscript();
postscriptfile sollya_lib_postscriptfile();

perturb sollya_lib_perturb();
RD sollya_lib_round_down();
RU sollya_lib_round_up();
RZ sollya_lib_round_towards_zero();
RN sollya_lib_round_to_nearest();

honorcoeffprec sollya_lib_honorcoeffprec();
true sollya_lib_true();
false sollya_lib_false();
void sollya_lib_void();

default sollya_lib_default();
decimal sollya_lib_decimal();
absolute sollya_lib_absolute();
relative sollya_lib_relative();

fixed sollya_lib_fixed();
floating sollya_lib_floating();

error sollya_lib_error();
D, double sollya_lib_double_obj();
SG, single sollya_lib_single_obj();
QD, quad sollya_lib_quad_obj();

HP, halfprecision sollya_lib_halfprecision_obj();
DE, doubleextended sollya_lib_doubleextended_obj();
DD, doubledouble sollya_lib_double_double_obj();
TD, tripledouble sollya_lib_triple_double_obj();

"Hello" sollya_lib_string("Hello")
[1, 3.5] sollya_lib_range_from_interval(a);a

[1, 3.5] sollya_lib_range_from_bounds(b, c);b

[1, 3.5] sollya_lib_range(d, e);c

aa is a mpfi_t containing the interval [1, 3.5]. Conversion is always exact.
bb and c are mpfr_t respectively containing the numbers 1 and 3.5. Conversion is always exact.
cd and e are sollya_obj_t respectively containing the numbers 1 and 3.5. Conversion is always exact.

10.5.4 Lists

There are actually two kinds of lists: regular lists (such as, e.g., [|1, 2, 3|]) and semi-infinite lists
(such as, e.g., [|1, 2...|]). Withing the interactive tool, the ellipsis “...” can sometimes be used as
a shortcut to define regular lists, e.g., [|1, 2, ..., 10|].

In the library, there is no symbol for the ellipsis, and there are two distinct types: one for regular lists

230

and one for semi-infinite lists (called end-elliptic). Defining a regular list with an ellipsis is not possible
in the library (except of course with sollya_lib_parse_string).

Constructing regular lists is achieved through three functions:

∙ sollya_obj_t sollya_lib_list(sollya_obj_t[] L, int n): this function returns a new ob-
ject that is a list the elements of which are copies of L[0], . . . , L[n-1].

∙ sollya_obj_t sollya_lib_build_list(sollya_obj_t obj1, ...): this function accepts a vari-
able number of arguments. The last one must be NULL. It “eats up” its arguments and returns a
list containing the objects given as arguments. Since arguments are eaten up, they may be directly
produced by function calls, without being stored in variables. A typical use could be

sollya_lib_build_list(SOLLYA_CONST(1), SOLLYA_CONST(2), SOLLYA_CONST(3), NULL);

∙ sollya_obj_t sollya_lib_v_build_list(va_list): the same as the previous functions, but
with a va_list.

Following the same conventions, end-elliptic lists can be constructed with the following functions:

∙ sollya_obj_t sollya_lib_end_elliptic_list(sollya_obj_t[] L, int n).

∙ sollya_obj_t sollya_lib_build_end_elliptic_list(sollya_obj_t obj1, ...).

∙ sollya_obj_t sollya_lib_v_build_end_elliptic_list(va_list).

10.5.5 Structures

Sollya structures are also available in library mode as any other Sollya object. The support for Sollya
structures is however minimal and creating them might seem cumbersome2. The only function available
to create structures is

int sollya_lib_create_structure(sollya_obj_t *res, sollya_obj_t s, char *name,
sollya_obj_t val).

This function returns a boolean integer: false means failure, and true means success. Three cases of
success are possible. In all cases, the function creates a new object and stores it at the address referred
to by res.

∙ If s is NULL: *res is filled with a structure with only one field. This field is named after the string
name and contains a copy of the object val.

∙ If s is an already existing structure that has a field named after the string name: *res is filled with
a newly created structure. This structure is the same as s except that the field corresponding to
name contains a copy of val.

∙ If s is an already existing structure that does not have a field named after the string name: *res
is filled with a newly created structure. This structure is the same as s except that it has been
augmented with a field corresponding to name and that contains a copy of val.

Please notice that s is not changed by this function: the structure stored in *res is a new one that does
not refer to any of the components of s. As a consequence, one should not forget to explicitly clear s as
well as *res when they become useless.

2Users are encouraged to make well-founded feature requests if they feel the need for better support of structures.

231

10.5.6 Library functions, library constants and procedure functions

In addition to the mathematical base functions and constants provided by Sollya and listed in the
Section above, the user may bind other mathematical functions and constants to Sollya objects under
the condition that they can provide code to evaluate these functions or constants. The mechanism
behind is similar to the one available in interactive Sollya through the library, libraryconstant and
function commands (see Sections 8.98, 8.99 and 8.73).

With the Sollya library, this binding is done through one of the following functions:

∙ Binding of a (non-constant) mathematical function for which evaluation code is available through
a C pointer to a function:
sollya_obj_t sollya_lib_libraryfunction(sollya_obj_t e,

char *name,
int (*f)(mpfi_t, mpfi_t, int));

sollya_obj_t sollya_lib_build_function_libraryfunction(sollya_obj_t e,
char *name,
int (*f)(mpfi_t, mpfi_t, int));

sollya_obj_t sollya_lib_libraryfunction_with_data(
sollya_obj_t e,
char *name,
int (*f)(mpfi_t, mpfi_t, int, void *),
void *data,
void (*dealloc_func)(void *));

sollya_obj_t sollya_lib_build_function_libraryfunction_with_data(
sollya_obj_t e,
char *name,
int (*f)(mpfi_t, mpfi_t, int, void *),
void *data,
void (*dealloc_func)(void *));

These four functions construct a Sollya object representing 𝑓(𝑒) where 𝑒 is given as the Sollya
object e and 𝑓 is given as the pointer to a function f(mpfi_t y, mpfi_t x, int n) (resp.
f(mpfi_t y, mpfi_t x, int n, void *data)). This code must evaluate the 𝑛-th derivative of
𝑓 over the interval 𝑥, yielding 𝑦.
As usual, the functions whose name contains _build_function_ “eat up” the object e, while the
corresponding functions (without _build_function_ in their name) do not.
The name argument of the function is taken as a suggestion to the name the Sollya object repre-
senting the function should be printed as when displayed. The user may choose to provide NULL
instead. In any case, upon the binding, the Sollya library will determine a unique displaying
name for the function. If it is not yet taken as a name (for some other Sollya object or Sollya
keyword), the suggested name will be used. If no suggested name is provided, the name of the
dynamic object behind the pointer to the function will be used if it can be determined. Otherwise,
a more-or-less random name is used. If the (suggested) base name is already taken, the name is
unified appending an underscore and a unique number to it. The name argument is never “eaten
up”, i.e., it is up to the user to free any memory allocated to that pointer.
The functions whose name contains _with_data allow for the same binding of an external function
to a Sollya object as the corresponding functions (without _with_data in their name), but addi-
tionally permit an opaque data pointer data to be registered together with the function pointer f.
The data pointer data will be represented to the function f on each call, in an additional (last)
argument of type void * that the function f is supposed to take.
Such opaque data pointers may be used, e.g., to distinguish between several different external
procedure objects when only unique function pointer is available and the actual procedural code is
contained in a closure represented thru the data pointer.
As the data field the data pointer points to may require deallocation once the Sollya object
built thru invocation of the functions described inhere and all of its copies eventually get deallo-
cated, a data-field-deallocation function dealloc_func may be registered together with the data

232

field. That function will be called with the data pointer in argument when the Sollya object
is deallocated. When the user does not need such a deallocation function, they may provide
NULL as the dealloc_func argument to the sollya_lib_libraryfunction_with_data function
or sollya_lib_build_function_libraryfunction_with_data function, in which case the argu-
ment is ignored and no deallocation function gets called for the Sollya object built.

∙ Binding of a mathematical constant for which evaluation code is available through a C pointer to
a function:
sollya_obj_t sollya_lib_libraryconstant(char *name,

void (*c)(mpfr_t, mp_prec_t));
sollya_obj_t sollya_lib_build_function_libraryconstant(char *name,

void (*c)(mpfr_t, mp_prec_t));
sollya_obj_t sollya_lib_libraryconstant_with_data(

char *name,
void (*c)(mpfr_t, mp_prec_t, void *),
void *data,
void (*dealloc_func)(void *));

sollya_obj_t sollya_lib_build_function_libraryconstant_with_data(
char *name,
void (*c)(mpfr_t, mp_prec_t, void *),
void *data,
void (*dealloc_func)(void *));

These four functions construct a Sollya object representing the mathematical constant 𝑐 for which
a pointer to a function c(mpfr_t rop, mp_prec_t prec) (resp.
c(mpfr_t rop, mp_prec_t prec, void *data)) is provided. This code must evaluate the con-
stant to precision prec and affect the result to rop. See Section 8.99 for details with respect
to prec.
The same remark as above concerning the suggested displaying name of the Sollya object applies
for the name argument.
In the same manner, the same remarks as above concerning the functions taking a data field pointer
data apply.

∙ Binding of a mathematical function for which evaluation code is available through a Sollya object
representing a Sollya procedure:
sollya_obj_t sollya_lib_procedurefunction(sollya_obj_t e, sollya_obj_t f);
sollya_obj_t sollya_lib_build_function_procedurefunction(sollya_obj_t e,

sollya_obj_t f);

These two functions construct a Sollya library object representing 𝑓(𝑒) where 𝑒 corresponds to
the mathematical function (or constant) given with argument e and where 𝑓 is given as a Sollya
procedure f(x, n, p) evaluating the 𝑛-th derivative of 𝑓 over the interval 𝑥 with precision 𝑝. See
Section 8.73 concerning details of the arguments of that Sollya procedure.
As usual, sollya_lib_build_function_procedurefunction “eats up” its arguments e and f
while sollya_obj_t sollya_lib_procedurefunction does not.
Currently, the only way of constructing a Sollya library object representing a Sollya procedure
is to use sollya_lib_parse_string.

10.5.7 External procedures

Similarly to library functions or library constants, the binding of which is discussed in Section 10.5.6,
Sollya allows external procedural code to be bound and then used inside Sollya in a procedure-like man-
ner. This is provided in the interactive tool with the externalproc command, described in Section 8.64.
The same mechanism is available in the Sollya library thanks to the following functions:

∙ To bind a function pointer p as a procedure named name, having arity arity, returning a result
of type res_type and accepting arguments of types arg_types[0] thru arg_types[arity - 1],

233

the function
sollya_obj_t

sollya_lib_externalprocedure(sollya_externalprocedure_type_t res_type,
sollya_externalprocedure_type_t *arg_types,
int arity,
char *name,
void *p);

may be used.
The name argument of the function is only taken as a suggestion to the name the Sollya object
representing the function should be printed as when displayed. The user may choose to provide
NULL instead. In any case, upon the binding, the Sollya library will determine a unique displaying
name for the procedure. If it is not yet taken as a name (for some other Sollya object or Sollya
keyword), the suggested name will be used. If no suggested name is provided, the name of the
dynamic object behind the pointer to the function will be used if it can be determined. Otherwise,
a more-or-less random name is used. If the (suggested) base name is already taken, the name is
unified appending an underscore and a unique number to it. The name argument is never “eaten
up”, i.e., it is up to the user to free any memory allocated for that pointer.
The result type res_type as well as the argument types arg_types take one of the values defined
by the enumeration type sollya_externalprocedure_type_t, detailed in Table 4. The array
(resp. pointer) to the argument types arg_types provided to the sollya_lib_externalprocedure
function is not “eaten up” by the function, i.e., it is up to the user to free any memory allocated
for that pointer (where applicable). When the external procedure does not take any argument, its
arity is to be set to zero. In this case, the argument type pointer arg_types is ignored by the
sollya_lib_externalprocedure function; it hence may be invalid or NULL in this case.
The actual C function to be bound is supposed to have a function type corresponding to the result
and argument types indicated. It is supposed to be provided to the sollya_lib_externalprocedure
function as a void * function pointer, though, for the sake of unification of the Sollya library
interface. A detailed description of the actual type of the C function is given in Section 8.64.

∙ In addition to the basic binding function described above, the
sollya_obj_t

sollya_lib_externalprocedure_with_data(
sollya_externalprocedure_type_t res_type,
sollya_externalprocedure_type_t *arg_types,
int arity,
char *name,
void *p,
void *data,
void (*dealloc_func)(void *));

function allows for the same binding of an external procedure to a Sollya object but additionally
permits an opaque data pointer data to be registered together with the function pointer p. The
data pointer data will be represented to the function p on each call, in an additional (last) argument
of type void * that the function p is supposed to take.
Such opaque data pointers may be used, e.g., to distinguish between several different external
procedure objects when only unique function pointer is available and the actual procedural code is
contained in a closure represented thru the data pointer.
As the data field the data pointer points to may require deallocation once the Sollya object built
thru invocation of the sollya_lib_externalprocedure_with_data and all of its copies eventually
get deallocated, a data-field-deallocation function dealloc_func may be registered together with
the data field. That function will be called with the data pointer in argument when the Sollya
object is deallocated. When the user does not need such a deallocation function, they may provide
NULL as the dealloc_func argument to the sollya_lib_externalprocedure_with_data function,
in which case the argument is ignored and no deallocation function gets called for the Sollya object
built.

234

Table 4: Possible return and argument types for external procedures

SOLLYA_EXTERNALPROC_TYPE_VOID
SOLLYA_EXTERNALPROC_TYPE_CONSTANT
SOLLYA_EXTERNALPROC_TYPE_FUNCTION
SOLLYA_EXTERNALPROC_TYPE_RANGE
SOLLYA_EXTERNALPROC_TYPE_INTEGER
SOLLYA_EXTERNALPROC_TYPE_STRING
SOLLYA_EXTERNALPROC_TYPE_BOOLEAN
SOLLYA_EXTERNALPROC_TYPE_OBJECT
SOLLYA_EXTERNALPROC_TYPE_CONSTANT_LIST
SOLLYA_EXTERNALPROC_TYPE_FUNCTION_LIST
SOLLYA_EXTERNALPROC_TYPE_RANGE_LIST
SOLLYA_EXTERNALPROC_TYPE_INTEGER_LIST
SOLLYA_EXTERNALPROC_TYPE_STRING_LIST
SOLLYA_EXTERNALPROC_TYPE_BOOLEAN_LIST
SOLLYA_EXTERNALPROC_TYPE_OBJECT_LIST

10.6 Getting the type of an object
Functions are provided that allow the user to test the type of a Sollya object. They are listed in Table 5.
They all return an int interpreted as the boolean result of the test. Please note that from a typing point
of view, a mathematical constant and a non-constant functional expression are both functions.

10.7 Recovering the value of a range
If a sollya_obj_t is a range, it is possible to recover the values corresponding to the bounds of the
range. The range can be recovered either as a mpfi_t or as two mpfr_t (one per bound). This is achieved
with the following conversion functions:

∙ int sollya_lib_get_interval_from_range(mpfi_t res, sollya_obj_t arg),

∙ int sollya_lib_get_bounds_from_range(mpfr_t res_left, mpfr_t res_right,
sollya_obj_t arg).

They return a boolean integer: false means failure (i.e., if the sollya_obj_t is not a range) and true
means success. These functions follow the same conventions as those of the MPFR and MPFI libraries: the
variables res, res_left and res_right must be initialized beforehand, and are used to store the result
of the conversion. Also, the functions sollya_lib_get_something_from_range do not change the
internal precision of res, res_left and res_right. If the internal precision is sufficient to perform
the conversion without rounding, then it is guaranteed to be exact. If, on the contrary, the internal
precision is not sufficient, the actual bounds of the range stored in arg will be rounded at the target
precision using a rounding mode that ensures that the inclusion property remains valid, i.e., arg ⊆ res
(resp. arg ⊆ [res_left, res_right]).

Function int sollya_lib_get_prec_of_range(mp_prec_t *prec, sollya_obj_t arg) stores at
*prec a precision that is guaranteed to be sufficient to represent the range stored in arg without rounding.
The returned value of this function is a boolean that follows the same convention as above. In conclusion,
this is an example of a completely safe conversion:

235

Table 5: Testing the type of a Sollya object (Returns non-zero if true, 0 otherwise)

sollya_lib_obj_is_function(obj)
sollya_lib_obj_is_range(obj)
sollya_lib_obj_is_string(obj)
sollya_lib_obj_is_list(obj)
sollya_lib_obj_is_end_elliptic_list(obj)
sollya_lib_obj_is_structure(obj)
sollya_lib_obj_is_procedure(obj)
sollya_lib_obj_is_externalprocedure(obj)
sollya_lib_obj_is_error(obj)

sollya_lib_is_on(obj)
sollya_lib_is_off(obj)
sollya_lib_is_dyadic(obj)
sollya_lib_is_powers(obj)
sollya_lib_is_binary(obj)
sollya_lib_is_hexadecimal(obj)
sollya_lib_is_file(obj)
sollya_lib_is_postscript(obj)
sollya_lib_is_postscriptfile(obj)
sollya_lib_is_perturb(obj)
sollya_lib_is_round_down(obj)
sollya_lib_is_round_up(obj)
sollya_lib_is_round_towards_zero(obj)
sollya_lib_is_round_to_nearest(obj)
sollya_lib_is_honorcoeffprec(obj)
sollya_lib_is_true(obj)
sollya_lib_is_false(obj)
sollya_lib_is_void(obj)
sollya_lib_is_default(obj)
sollya_lib_is_decimal(obj)
sollya_lib_is_absolute(obj)
sollya_lib_is_relative(obj)
sollya_lib_is_fixed(obj)
sollya_lib_is_floating(obj)
sollya_lib_is_double_obj(obj)
sollya_lib_is_single_obj(obj)
sollya_lib_is_quad_obj(obj)
sollya_lib_is_halfprecision_obj(obj)
sollya_lib_is_doubleextended_obj(obj)
sollya_lib_is_double_double_obj(obj)
sollya_lib_is_triple_double_obj(obj)
sollya_lib_is_pi(obj)

236

...
mp_prec_t prec;
mpfr_t a, b;

if (!sollya_lib_get_prec_of_range(&prec, arg)) {
sollya_lib_printf("Unexpected error: %b is not a range\n", arg);

}
else {

mpfr_init2(a, prec);
mpfr_init2(b, prec);
sollya_lib_get_bounds_from_range(a, b, arg);

/* Now [a, b] = arg exactly */
}
...

10.8 Recovering the value of a numerical constant or a constant expression
From a conceptual point of view, a numerical constant is nothing but a very simple constant functional
expression. Hence there is no difference in Sollya between the way constants and constant expressions
are handled. The functions presented in this section allow one to recover the value of such constants or
constant expressions into usual C data types.

A constant expression being given, three cases are possible:

∙ When naively evaluated at the current global precision, the expression always leads to provably
exact computations (i.e., at each step of the evaluation, no rounding happens). For instance
numerical constants or simple expressions such as (exp(0) + 5)/16 fall in this category.

∙ The constant expressions would be exactly representable at some precision but this is not straight-
forward from a naive evaluation at the current global precision. An example would be sin(𝜋/3)/

√
3

or even 1 + 2−prec−10.

∙ Finally, a third possibility is that the value of the expression is not exactly representable at any
precision on a binary floating-point number. Possible examples are 𝜋 or 1/10.

From now on, we suppose that arg is a sollya_obj_t that contains a constant expression (or, as a
particular case, a numerical constant). The general scheme followed by the conversion functions is the
following: Sollya chooses an initial working precision greater than the target precision. If the value of
arg is easily proved to be exactly representable at that precision, Sollya first computes this exact value
and then rounds it to the nearest number of the target format (ties-to-even). Otherwise, Sollya tries to
adapt the working precision automatically in order to ensure that the result of the conversion is one of
both numbers in the target format that are closest to the exact value (a faithful rounding). A warning
message indicates that the conversion is not exact and that a faithful rounding has been performed. In
some cases really hard to evaluate, the algorithm can even fail to find a faithful rounding. In that case,
too, a warning message is emitted indicating that the result of the conversion should not be trusted. Let
us remark that these messages can be caught instead of being displayed and adapted handling can be
provided by the user of the library at each emission of a warning (see Section 10.18).

The conversion functions are the following. They return a boolean integer: false means failure (i.e.,
arg is not a constant expression) and true means success.

∙ int sollya_lib_get_constant_as_double(double *res, sollya_obj_t arg)

∙ int sollya_lib_get_constant_as_int(int *res, sollya_obj_t arg): any value too big to
be represented (this includes ±Inf) is converted to INT_MIN or INT_MAX and a warning is emitted.
NaN is converted to 0 with a specific warning.

∙ int sollya_lib_get_constant_as_int64(int64_t *res, sollya_obj_t arg): any value too
big to be represented (this includes ±Inf) is converted to INT64_MIN or INT64_MAX and a warning
is emitted. NaN is converted to 0 with a specific warning.

237

∙ int sollya_lib_get_constant_as_uint64(uint64_t *res, sollya_obj_t arg): negative val-
ues are converted to 0 with a warning. Any value too big to be represented (this includes Inf) is
converted to UINT64_MAX and a warning is emitted. NaN is converted to 0 with a specific warning.

∙ int sollya_lib_get_constant_as_mpz(mpz_t res, sollya_obj_t arg): the result of the con-
version is stored in res. Please note that res must be initialized beforehand. Infinities and NaN
are converted to 0 with specific warnings.

∙ int sollya_lib_get_constant_as_uint64_array(int *sign, uint64_t **value,
size_t *length, sollya_obj_t arg): the

result of the conversion is equivalent to the one obtained with sollya_lib_get_constant_as_mpz
but it is stored differently. The sign 𝜎 of the result (one of −1, 0 or 1) is put into the variable
pointed to by sign. A uint64_t-array of a certain size 𝑠 is allocated; the variable pointed to by
value is set to that pointer. The variable pointed to by length is set to the size 𝑠 of the array.

The elements 𝑣𝑖 =(*value)[i] are set to a value such that 𝜎 ·
𝑠−1∑︀
𝑖=0

𝑣𝑖 · 264 𝑖 is equal to the value

that would have been the result of the conversion with sollya_lib_get_constant_as_mpz. In
case of failure, the variables pointed to by sign, length and *value are left unchanged and no
allocation is performed. The user is in charge of deallocating the array *value allocated by this
function when it succeeds, using sollya_lib_free. The size 𝑠 of the array is at least 1 in all
cases, even if the result of the conversion is zero. The element of the array 𝑣𝑠−1 is guaranteed to
be non-zero, unless the result of the whole conversion is zero. Infinities and NaN are converted to 0
with specific warnings. This function is provided as a convenience to wrapper libraries that cannot
afford binding to the GMP library but need support for arbitrary length integers, though.

∙ int sollya_lib_get_constant_as_mpq(mpq_t res, sollya_obj_t arg): the result of the con-
version is stored in res. Please note that res must be initialized beforehand. If arg cannot be
proved to be exactly a floating-point number or the ratio of two floating-point numbers at some
precision, the function returns false and res is left unchanged.

∙ int sollya_lib_get_constant(mpfr_t res, sollya_obj_t arg): the result of the conversion
is stored in res. Please note that res must be initialized beforehand and that its internal precision
is not modified by the algorithm.

Function int sollya_lib_get_prec_of_constant(mp_prec_t *prec, sollya_obj_t arg) tries to
find a precision that would be sufficient to exactly represent the value of arg without rounding. If it
manages to find such a precision, it stores it at *prec and returns true. If it does not manage to find
such a precision, or if arg is not a constant expression, it returns false and *prec is left unchanged.

In conclusion, here is an example of use for converting a constant expression to a mpfr_t:

...
mp_prec_t prec;
mpfr_t a;
int test = 0;

test = sollya_lib_get_prec_of_constant(&prec, arg);
if (test) {

mpfr_init2(a, prec);
sollya_lib_get_constant(a, arg); /* Exact conversion */

}
else {

mpfr_init2(a, 165); /* Initialization at some default precision */
test = sollya_lib_get_constant(a, arg);
if (!test) {

sollya_lib_printf("Error: %b is not a constant expression\n", arg);
}

}
...

238

10.9 Converting a string from Sollya to C
If arg is a sollya_obj_t that contains a string, that string can be recovered using

int sollya_lib_get_string(char **res, sollya_obj_t arg).

If arg really is a string, this function allocates enough memory on the heap to store the corresponding
string, it copies the string at that newly allocated place, and sets *res so that it points to it. The
function returns a boolean integer: false means failure (i.e., arg is not a string) and true means success.

Since this function allocates memory on the heap, this memory should manually be cleared by the
user with sollya_lib_free once it becomes useless.

10.10 Recovering the contents of a Sollya list
It is possible to recover the 𝑖-th element of a list arg (as one would do using arg[i] withing Sollya)
with the following function:

int sollya_lib_get_element_in_list(sollya_obj_t *res, sollya_obj_t arg, int i).

It returns a boolean integer: false means failure (i.e., arg is not a list or the index is out of range) and
true means success. In case of success, a copy of the 𝑖-th element of arg is stored at the address referred
to by res. Since it is a copy, it should be cleared with sollya_lib_clear_obj when it becomes useless.
Please notice that this function works with regular lists as well as with end-elliptic lists, just as within
the interactive tool.

Another function allows user to recover all elements of a list in a single call. This function returns a
C array of sollya_obj_t objects and has the following signature:

int sollya_lib_get_list_elements(sollya_obj_t **L, int *n, int *end_ell,
sollya_obj_t arg).

Three cases are possible:

∙ If arg is a regular list of length 𝑁 , the function allocates memory on the heap for 𝑁 sollya_obj_t,
sets *L so that it points to that memory segment, and copies each of the elements 𝑁 of arg to
(*L)[0], . . . , (*L)[N-1]. Finally, it sets *n to 𝑁 , *end_ell to zero and returns true. A particular
case is when arg is the empty list: everything is the same except that no memory is allocated and
*L is left unchanged.

∙ If arg is an end-elliptic list containing 𝑁 elements plus the ellipsis. The function allocates memory
on the heap for 𝑁 sollya_obj_t, sets *L so that it points to that memory segment, and copies
each of the elements 𝑁 of arg at (*L)[0], . . . , (*L)[N-1]. Finally, it sets *n to 𝑁 , *end_ell to a
non-zero value and returns true. The only difference between a regular list and an end-elliptic list
containing the same elements is hence that *end_ell is set to a non-zero value in the latter.

∙ If arg is neither a regular nor an end-elliptic list, *L, *n and *end_ell are left unchanged and the
function returns false.

In case of success, please notice that (*L)[0], . . . , (*L)[N-1] should manually be cleared with
sollya_lib_clear_obj when they become useless. Also, the pointer *L itself should be cleared with
sollya_lib_free since it points to a segment of memory allocated on the heap by Sollya.

10.11 Recovering the contents of a Sollya structure
If arg is a sollya_obj_t that contains a structure, the contents of a given field can be recovered using

int sollya_lib_get_element_in_structure(sollya_obj_t *res, char *name,
sollya_obj_t arg).

239

If arg really is a structure and if that structure has a field named after the string name, this function
copies the contents of that field into the Sollya object *res. The function returns a boolean integer:
false means failure (i.e., if arg is not a structure or if it does not have a field named after name) and true
means success.

It is also possible to get all the field names and their contents. This is achieved through the function

int sollya_lib_get_structure_elements(char ***names, sollya_obj_t **objs, int *n,
sollya_obj_t arg).

If arg really is a structure, say with 𝑁 fields called “fieldA”, . . . , “fieldZ”, this functions sets *n to 𝑁 ,
allocates and fills an array of 𝑁 strings and sets *names so that it points to that segment of memory
(hence (*names)[0] is the string “fieldA”, . . . , (*names)[N-1] is the string “fieldZ”). Moreover, it
allocates memory for 𝑁 sollya_obj_t, sets *objs so that it points on that memory segment, and copies
the contents of each of the 𝑁 fields at (*objs)[0], . . . , (*objs)[N-1]. Finally it returns true. If arg is
not a structure, the function simply returns false without doing anything. Please note that since *names
and *objs point to memory segments that have been dynamically allocated, they should manually be
cleared by the user with sollya_lib_free once they become useless.

10.12 Decomposing a functional expression
If a sollya_obj_t contains a functional expression, one can decompose the expression tree using the
following functions. These functions all return a boolean integer: true in case of success (i.e., if the
sollya_obj_t argument really contains a functional expression) and false otherwise.

Table 6: List of values defined in type sollya_base_function_t

SOLLYA_BASE_FUNC_COS SOLLYA_BASE_FUNC_DOUBLE SOLLYA_BASE_FUNC_LOG
SOLLYA_BASE_FUNC_ACOS SOLLYA_BASE_FUNC_DOUBLEDOUBLE SOLLYA_BASE_FUNC_LOG_2
SOLLYA_BASE_FUNC_ACOSH SOLLYA_BASE_FUNC_DOUBLEEXTENDED SOLLYA_BASE_FUNC_LOG_10
SOLLYA_BASE_FUNC_COSH SOLLYA_BASE_FUNC_TRIPLEDOUBLE SOLLYA_BASE_FUNC_LOG_1P
SOLLYA_BASE_FUNC_SIN SOLLYA_BASE_FUNC_HALFPRECISION SOLLYA_BASE_FUNC_EXP
SOLLYA_BASE_FUNC_ASIN SOLLYA_BASE_FUNC_SINGLE SOLLYA_BASE_FUNC_EXP_M1
SOLLYA_BASE_FUNC_ASINH SOLLYA_BASE_FUNC_QUAD SOLLYA_BASE_FUNC_NEG
SOLLYA_BASE_FUNC_SINH SOLLYA_BASE_FUNC_FLOOR SOLLYA_BASE_FUNC_SUB
SOLLYA_BASE_FUNC_TAN SOLLYA_BASE_FUNC_CEIL SOLLYA_BASE_FUNC_ADD
SOLLYA_BASE_FUNC_ATAN SOLLYA_BASE_FUNC_NEARESTINT SOLLYA_BASE_FUNC_MUL
SOLLYA_BASE_FUNC_ATANH SOLLYA_BASE_FUNC_LIBRARYCONSTANT SOLLYA_BASE_FUNC_DIV
SOLLYA_BASE_FUNC_TANH SOLLYA_BASE_FUNC_LIBRARYFUNCTION SOLLYA_BASE_FUNC_POW
SOLLYA_BASE_FUNC_ERF SOLLYA_BASE_FUNC_PROCEDUREFUNCTION SOLLYA_BASE_FUNC_SQRT
SOLLYA_BASE_FUNC_ERFC SOLLYA_BASE_FUNC_FREE_VARIABLE SOLLYA_BASE_FUNC_PI
SOLLYA_BASE_FUNC_ABS SOLLYA_BASE_FUNC_CONSTANT

∙ int sollya_lib_get_function_arity(int *n, sollya_obj_t f): it stores the arity of the head
function in f at the address referred to by n. Currently, the mathematical functions handled in
Sollya are at most dyadic. Mathematical constants are considered as 0-adic functions. The free
variable is regarded as the identity function applied to the free variable: its arity is hence 1.

∙ int sollya_lib_get_head_function(sollya_base_function_t *type, sollya_obj_t f):
it stores the type of f at the address referred to by type. The sollya_base_function_t is an
enum type listing all possible cases (see Table 6).

∙ int sollya_lib_get_subfunctions(sollya_obj_t f, int *n, ...): let us denote by g_1, . . . ,
g_k the arguments following the argument n. They must be of type sollya_obj_t *. The func-
tion stores the arity of f at the address referred to by n (except if n is NULL, in which case,

240

sollya_lib_get_subfunctions simply ignores it and goes on). Suppose that f contains an ex-
pression of the form 𝑓0(𝑓1, . . . , 𝑓𝑠) (as a particular case, if f is just the free variable, it is regarded
in this context as the identity function applied to the free variable, so both 𝑓0 and 𝑓1 are the
free variable). For each 𝑖 from 1 to 𝑠, the expression corresponding to 𝑓𝑖 is stored at the address
referred to by g_i, unless one of the g_i is NULL in which case the function returns when encoun-
tering it. In practice, it means that the user should always put NULL as last argument, in order to
prevent the case when they would not provide enough variables g_i. They can check afterwards
that they provided enough variables by checking the value contained at the address referred to
by n. If the user does not put NULL as last argument and do not provide enough variables g_i,
the algorithm will continue storing arguments at random places in the memory (on the contrary,
providing more arguments than necessary does not harm: useless arguments are simply ignored
and left unchanged). In the case when 𝑓0 is a library function, a constant (i.e., represented by the
sollya_base_function_t SOLLYA_BASE_FUNC_CONSTANT), a library constant, the constant 𝜋 (i.e.,
represented by the sollya_base_function_t SOLLYA_BASE_FUNC_PI) or a procedure function, and
if the user provides a non-NULL argument g_t after g_s, additional information is returned in the
remaining argument:

– If 𝑓0 is a library function, a Sollya object corresponding to the expression 𝑓0(𝑥) is stored at
the address referred to by g_t. This allows the user to get a Sollya object corresponding
to function 𝑓0. This object can further be used to evaluate 𝑓0 at points or to build new
expressions involving 𝑓0. Please notice that a library function object is not necessarily the
result of a call to the library command: it can also be, e.g., the derivative of a function
created by a call to library.

– If 𝑓0 is a procedure function, a Sollya object corresponding to the expression 𝑓0(𝑥) is stored
at the address referred to by g_t. The same remarks as above apply.

– If 𝑓0 is a constant, the constant 𝜋, or a library constant, 𝑓0 itself is stored at the address
referred to by g_t. In this particular case, 𝑡 = 1 and the object referred to by g_t simply gets
a copy of f. This (somehow useless) mechanism is made only to handle the cases of library
functions, procedure functions, constants and library constants in a unified way.

Please note that the objects that have been stored in variables g_i must manually be cleared once
they become useless.

∙ int sollya_lib_v_get_subfunctions(sollya_obj_t f, int *n, va_list va): the same as
the previous function, but with a va_list argument.

∙ int sollya_lib_get_nth_subfunction(sollya_obj_t *res, sollya_obj_t f, int m): while
sollya_lib_get_subfunctions allows the user to retrieve all the subtrees of a functional expres-
sion (including an extra subtree in the case of a constant, the constant 𝜋, a library constant, a library
function or a procedure function), this function allows the user to retrieve only one of them. More
precisely (using the same notations as in the documentation of sollya_lib_get_subfunctions
above) if sollya_lib_get_subfunctions would put something at the address referred to by vari-
able g_m, then sollya_lib_get_nth_subfunction(res, f, m) would put the same thing at the
address referred to by res and return a boolean integer representing true. In any other case, it
would let res unchanged and return a boolean integer representing false. Notice that the sub-
functions are numbered starting from 1 (as opposed to, e.g., arrays in C), hence in the expression
𝑓 = 𝑒1 + 𝑒2, the subexpression 𝑒1 corresponds to 𝑚 = 1 and the subexpression 𝑒2 corresponds to
𝑚 = 2. Accordingly, in an expression like 𝑓 = sin(𝑒), the subexpression 𝑒 corresponds to 𝑚 = 1.

∙ int sollya_lib_decompose_function(sollya_obj_t f, sollya_base_function_t *type,
int *n, ...):

this function is a all-in-one function equivalent to using sollya_lib_get_head_function and
sollya_lib_get_subfunctions in only one function call.

∙ int sollya_lib_v_decompose_function(sollya_obj_t f, sollya_base_function_t *type,
int *n, va_list va):

the same as the previous function, but with a va_list.

241

To construct a functional expression, functions are provided that precisely undo what
sollya_lib_decompose_function does. These functions are the following:

∙ int sollya_lib_construct_function(sollya_obj_t *res, sollya_base_function_t type, ...):
let us denote by g_1, ..., g_k the arguments following the argument type. They must be of type
sollya_obj_t. The function creates a functional expression whose head function corresponds to
the basic function represented by variable type and whose arguments are g_1, ..., g_s where 𝑠
denotes the arity of the considered basic function. It is the responsibility of the user to pro-
vide enough arguments with respect to the required arity. As a particular case, when the desired
type corresponds to a library function, a constant, the constant 𝜋, a library constant or a pro-
cedure function, the user must provide an extra argument g_t after g_s corresponding to what
sollya_lib_decompose_function would store in this extra argument on such a case (namely, a
Sollya object corresponding to the expression 𝑓0(𝑥) in the case of a library function or procedure
function, and 𝑓0 itself in the case of a constant, the constant 𝜋 or a library constant). As a partic-
ular case, and to make it more useful in practice, the argument g_t is allowed to be equal to NULL
whenever type is equal to SOLLYA_BASE_FUNC_PI, in which case the function will succeed, even
though g_t does not contain the constant 𝜋 as it theoretically should. Notice however that any
other value than NULL leads to a failure if it does not contain the constant 𝜋 itself. If everything
goes well the functional expression is created and stored at the address referred to by res and a
boolean integer representing true is returned. Notice that the arguments g_1, . . . , g_k are not
eaten up by this function and the user must subsequently manually clear these objects. If some-
thing goes wrong (bad number of arguments, arguments not having the proper type, etc.) res is
left unchanged and a boolean integer representing false is returned.

∙ int sollya_lib_v_construct_function(sollya_obj_t *res, sollya_base_function_t type,
va_list varlist):

the same as the previous function, but with a va_list.

As an example of use of the functions described in the present section, the following code returns 1 if
f denotes a functional expression made only of constants (i.e., without the free variable), and returns 0
otherwise:

242

#include <sollya.h>

/* Note: we suppose that the library has already been initialized */
int is_made_of_constants(sollya_obj_t f) {

sollya_obj_t tmp1 = NULL;
sollya_obj_t tmp2 = NULL;
int n, r, res;
sollya_base_function_t type;

r = sollya_lib_decompose_function(f, &type, &n, &tmp1, &tmp2, NULL);
if (!r) { sollya_lib_printf("Not a mathematical function\n"); res = 0; }
else if (n >= 3) {

sollya_lib_printf("Unexpected error: %b has more than two arguments.\n", f);
res = 0;

}
else {

switch (type) {
case SOLLYA_BASE_FUNC_FREE_VARIABLE: res = 0; break;
case SOLLYA_BASE_FUNC_PI: res = 1; break;
case SOLLYA_BASE_FUNC_CONSTANT: res = 1; break;
case SOLLYA_BASE_FUNC_LIBRARYCONSTANT: res = 1; break;
default:

res = is_made_of_constants(tmp1);
if ((res) && (n==2)) res = is_made_of_constants(tmp2);

}
}

if (tmp1) sollya_lib_clear_obj(tmp1);
if (tmp2) sollya_lib_clear_obj(tmp2);

return res;
}

Functions are provided to allow the user to retrieve further information from library function, library
constant, procedure function and external procedure objects:

∙ int sollya_lib_decompose_libraryfunction(int (**f)(mpfi_t, mpfi_t, int),
int *deriv, sollya_obj_t *e,
sollya_obj_t g):

assume that g represents an expression 𝑓0(𝑓1) where 𝑓0 is a library function. Then, 𝑓0 is the
𝑛-th derivative (for some 𝑛) of a function provided within Sollya via an external C function
int func(mpfi_t, mpfi_t, int).
As a result of a call to sollya_lib_decompose_libraryfunction, the value 𝑛 is stored at the
address referred to by deriv, a pointer to func is stored at the address referred to by f and a
Sollya object representing 𝑓1 is stored at the address referred to by e. Please notice that the
object stored in e must manually be cleared once it becomes useless. Upon success, a boolean
integer representing true is returned. If g is not a library function object, nothing happens and
false is returned.

∙ int sollya_lib_decompose_libraryfunction_with_data(
int (**f)(mpfi_t, mpfi_t, int, void *),
int *deriv, sollya_obj_t *e,
void **data, void (**dealloc)(void *),
sollya_obj_t g):

works exactly as the previous function but additionally returns a pointer to the void * data
field and to the pointer to the deallocation function that had been provided when the library

243

function was created. Notice that, in the case when g represents an expression 𝑓0(𝑓1) where
𝑓0 is indeed a library function, but has been constructed with sollya_lib_libraryfunction or
sollya_lib_build_function_libraryfunction and not with one of the _with_data variants,
this function will fail and return false without touching any of its argument.

∙ int sollya_lib_decompose_procedurefunction(sollya_obj_t *f, int *deriv,
sollya_obj_t *e, sollya_obj_t g):

assume that g represents an expression 𝑓0(𝑓1) where 𝑓0 is a procedure function. Then, 𝑓0 is the 𝑛-th
derivative (for some 𝑛) of a function provided within Sollya via a procedure proc(X, n, p) {...}.
As a result of a call to sollya_lib_decompose_procedurefunction, the value 𝑛 is stored at the
address referred to by deriv, a Sollya object representing the procedure is stored at the address
referred to by f, a Sollya object representing 𝑓1 is stored at the address referred to by e. Please
notice that the objects stored in f and e must manually be cleared once they become useless. Upon
success, a boolean integer representing true is returned. If g is not a procedure function object,
nothing happens and false is returned.

∙ int sollya_lib_decompose_libraryconstant(void (**f)(mpfr_t, mp_prec_t),
sollya_obj_t c):

assume that c is a constant provided via an external C function void func(mpfr_t, mp_prec_t).
As a result of a call to sollya_lib_decompose_libraryconstant, a pointer to func is stored at
the address referred to by f and a boolean integer representing true is returned. Otherwise, nothing
happens and false is returned.

∙ int sollya_lib_decompose_libraryconstant_with_data(
void (**f)(mpfr_t, mp_prec_t, void *),
void **data, void (**dealloc)(void *),
sollya_obj_t c):

works exactly as the previous function but additionally returns a pointer to the void * data
field and the pointer to the deallocation function that had been provided when the library con-
stant was created. Similarly to sollya_lib_decompose_libraryfunction_with_data, this func-
tion fails on library constants that have been created with sollya_lib_libraryconstant or
sollya_lib_build_function_libraryconstant instead of using the _with_data variant of these
constructors.

∙ int sollya_lib_decompose_externalprocedure(sollya_externalprocedure_type_t *res,
sollya_externalprocedure_type_t **args,
int *arity, void **f,
sollya_obj_t p):

assume that p is an external procedure provided via an external C function func (of appropriate
type) bound to Sollya by one of the means provided for that purpose. As a result of a call to
sollya_lib_decompose_externalprocedure, a pointer to func is stored at the address pointed
to by f, the result type of the external procedure is stored at res, an array of its argument types
is allocated, filled and stored at the address pointed to by args (unless the procedure function
takes no argument in which case the args argument is ignored), the arity of the external procedure
(and hence number of elements of the array allocated and stored at args) is stored at the integer
pointed by arity and true is returned. If p is no external procedure object, nothing happens and
false is returned.

∙ int sollya_lib_decompose_externalprocedure_with_data(
sollya_externalprocedure_type_t *res,
sollya_externalprocedure_type_t **args,
int *arity, void **f,
void **data, void (**dealloc)(void *),
sollya_obj_t p):

works exactly as the previous function but additionally returns a pointer to the void * data field
and the pointer to the deallocation function that had been provided when the external procedure
was created. The same remark as with sollya_lib_decompose_libraryfunction_with_data
and sollya_lib_decompose_libraryconstant_with_data also applies: this function fails when

244

used on an external procedure that has been constructed without the _with_data variant of the
constructor.

10.13 Faithfully evaluate a functional expression
Let us suppose that f is a functional expression and a is a numerical value or a constant expression.
One of the very convenient features of the interactive tool is that the user can simply write f(a) at the
prompt: the tool automatically adapts its internal precision in order to compute a value that is a faithful
rounding (at the current tool precision) of the true value 𝑓(𝑎). Sometimes it does not achieve to find a
faithful rounding, but in any case, if the result is not proved to be exact, a warning is displayed explaining
how confident one should be with respect to the returned value. The object a can also be an interval,
in which case Sollya automatically performs the evaluation using an enhanced interval arithmetic, e.g.,
using L’Hopital’s rule to produce finite (yet valid of course) enclosures even in cases when 𝑓 exhibits
removable singularities (for instance sin(𝑥)/𝑥 over an interval containing 0). This behavior is reproduced
in the library with the sollya_lib_apply function (this function is in fact to be used to reproduce any
construction of the form obj1(obj2, obj3, ...) within the library; for instance obj1 might also be a
procedure. See Section 10.17 for a more detailed description of this function). More precisely if f and a
are two sollya_obj_t representing respectively a univariate function and a constant or an interval, the
following call returns a new sollya_obj_t representing the object that would be produced as a result
of typing f(a); at the interactive prompt:

b = sollya_lib_apply(f, a, NULL);

However, when using the library, it might be interesting to have access to this feature when the
argument a is not a Sollya object but rather directly a multiprecision constant of type mpfr_t or
mpfi_t. Also, in this case, one may want to have a finer-grain access to the evaluation algorithm, e.g., to
correctly react to cases where a faithful rounding has not been achieved without having to catch warning
messages emitted by Sollya. This is the reason why the library proposes the following functions.

To evaluate a unary function at a constant expression or constant value, the library provides the two
following functions:

∙ sollya_fp_result_t
sollya_lib_evaluate_function_at_constant_expression(mpfr_t res, sollya_obj_t f,

sollya_obj_t a,
mpfr_t *cutoff),

∙ sollya_fp_result_t
sollya_lib_evaluate_function_at_point(mpfr_t res, sollya_obj_t f,

mpfr_t a, mpfr_t *cutoff).

In the former, the argument a is any sollya_obj_t containing a numerical constant or a constant ex-
pression, while in the latter a is a constant already stored in a mpfr_t. These functions store the result
in res and return a sollya_fp_result_t which is an enum type described in Table 7. In order to
understand the role of the cutoff parameter and the value returned by the function, it is necessary to
describe the algorithm in a nutshell:

Input: a functional expression f, a constant expression a, a target precision 𝑞, a parameter 𝜀.

1. Choose an initial working precision 𝑝.

2. Evaluate a with interval arithmetic, performing the computations at precision 𝑝.

3. Replace the occurrences of the free variable in f by the interval obtained at step 2. Evaluate the
resulting expression with interval arithmetic, performing the computations at precision 𝑝. This
yields an interval 𝐼 = [𝑥, 𝑦].

4. Examine the following cases successively (RN denotes rounding to nearest at precision 𝑞):

245

(a) If RN(𝑥) = RN(𝑦), set res to that value and return.
(b) If 𝐼 does not contain any floating-point number at precision 𝑞, set res to one of both floating-

point numbers enclosing 𝐼 and return.
(c) If 𝐼 contains exactly one floating-point number at precision 𝑞, set res to that number and

return.
(d) If all numbers in 𝐼 are smaller than 𝜀 in absolute value, then set res to 0 and return.
(e) If 𝑝 has already been increased many times, then set res to some value in 𝐼 and return.
(f) Otherwise, increase 𝑝 and go back to step 2.

The target precision 𝑞 is chosen to be the precision of the mpfr_t variable res. The parameter 𝜀
corresponds to the parameter cutoff. The reason why cutoff is a pointer is that, most of the time, the
user may not want to provide it, and using a pointer makes it possible to pass NULL instead. So, if NULL
is given, 𝜀 is set to 0. If cutoff is not NULL, the absolute value of *cutoff is used as value for 𝜀. Using
a non-zero value for 𝜀 can be useful when one does not care about the precise value of 𝑓(𝑎) whenever its
absolute value is below a given threshold. Typically, if one wants to compute the maximum of |𝑓(𝑎1)|,
. . . , |𝑓(𝑎𝑛)|, it is not necessary to spend too much effort on the computation of |𝑓(𝑎𝑖)| if one already
knows that it is smaller than 𝜀 = max{|𝑓(𝑎1)|, . . . , |𝑓(𝑎𝑖−1)|}.

To evaluate a unary function on an interval, the following function is provided:
int sollya_lib_evaluate_function_over_interval(mpfi_t res, sollya_obj_t f, mpfi_t a).

This function returns a boolean integer: false means failure (i.e., f is not a functional expression),
in which case res is left unchanged, and true means success, in which case res contains the result of
the evaluation. The function might succeed, and yet res might contain something useless such as an
unbounded interval or even [NaN, NaN] (this happens for instance when a contains points that lie in
the interior of the complement of the definition domain of f). It is the user’s responsibility to check
afterwards whether the computed interval is bounded, unbounded or NaN.

10.14 Comparing objects structurally and computing hashes on Sollya ob-
jects

The library provides function
int sollya_lib_cmp_objs_structurally(sollya_obj_t obj1, sollya_obj_t obj2)

to allow the user to perform a structural comparison of any two Sollya objects. It returns an integer
(interpreted as a boolean) that is true if and only if obj1 and obj2 are syntactically the same (as opposed
to mathematically). For instance the fractions 2/3 and 4/6 are recognized as mathematically equal by
Sollya when compared with == (or sollya_lib_cmp_equal with the library) but are syntactically
different.

Certain language bindings require hashes to be available for any object represented. In order to help
with such language bindings, the Sollya library supports a function that computes a 64 bit unsigned
integer as a hash for a given Sollya object:

uint64_t sollya_lib_hash(sollya_obj_t obj).

The Sollya library guarantees that any two objects that are syntactically equal (as when compared with
sollya_lib_cmp_objs_structurally) will have the same hash value. For some particular objects (e.g.,
polynomials) Sollya can normalize the expression before computing the hash value and in this case two
objects that are mathematically equal (even though they are not structurally equal) will have the same
hash value. However, except in such particular cases, two objects that are syntactically different are
likely to have different hashes (although this is not guaranteed, of course).

Computing the hash of an object takes a time proportional to the size of the directed acyclic graph
internally used to represent that object. However, Sollya will cache an object’s hash value for further
use after it has been computed, so the cost of computing the hash of a given object is paid only once.

The user should also be aware that the hash value for a given object is currently not guaranteed to
be portable between platforms nor over consecutive Sollya versions.

246

Table 7: List of values defined in type sollya_fp_result_t

Value Meaning
SOLLYA_FP_OBJ_NO_FUNCTION f is not a functional expression.

SOLLYA_FP_EXPRESSION_NOT_CONSTANT a is not a constant expression.

SOLLYA_FP_FAILURE The algorithm ended up at step (e) and 𝐼 con-
tained NaN. This typically happens when 𝑎 is
not in the definition domain of 𝑓 .

SOLLYA_FP_CUTOFF_IS_NAN cutoff was not NULL and the value of *cutoff
is NaN.

SOLLYA_FP_INFINITY The algorithm ended up at step (a) with 𝐼 of
the form [+∞, +∞] or [−∞, −∞]. Hence 𝑓(𝑎)
is proved to be an exact infinity.

SOLLYA_FP_PROVEN_EXACT The algorithm ended up at step (a) with a
finite value and 𝑥 = RN(𝑥) = RN(𝑦) = 𝑦.

SOLLYA_FP_CORRECTLY_ROUNDED_PROVEN_INEXACT The algorithm ended up at step (b) with a
finite value and res < 𝑥 ≤ 𝑦 or 𝑥 ≤ 𝑦 < res.

SOLLYA_FP_CORRECTLY_ROUNDED The algorithm ended up at step (a) with a
finite value and 𝑥 ≤ res ≤ 𝑦. 𝑎

SOLLYA_FP_FAITHFUL_PROVEN_INEXACT The algorithm ended up at step (b) with a
finite value and res < 𝑥 ≤ 𝑦 or 𝑥 ≤ 𝑦 < res.

SOLLYA_FP_FAITHFUL The algorithm ended up at step (c) with a
finite value. 𝑎

SOLLYA_FP_BELOW_CUTOFF The algorithm ended up at step (d).

SOLLYA_FP_NOT_FAITHFUL_ZERO_CONTAINED_BELOW_THRESHOLD The algorithm ended up at step (e) and 𝐼 was
of the form [−𝛿1, 𝛿2] where 0 < 𝛿𝑖 ≪ 1 (below
some threshold of the algorithm). This typi-
cally happens when 𝑓(𝑎) exactly equals zero,
but the algorithm does not manage to prove
this exact equality.

SOLLYA_FP_NOT_FAITHFUL_ZERO_CONTAINED_NOT_BELOW_THRESHOLD The algorithm ended up at step (e) with an
interval 𝐼 containing 0 but too large to fall in
the above case. 𝑏

SOLLYA_FP_NOT_FAITHFUL_ZERO_NOT_CONTAINED The algorithm ended up at step (e) with an
interval 𝐼 that does not contain 0. 𝑏

SOLLYA_FP_NOT_FAITHFUL_INFINITY_CONTAINED The algorithm ended up at step (e) and (at
least) one of the bounds of 𝐼 was infinite. This
typically happens when the limit of 𝑓(𝑥) when
𝑥 goes to 𝑎 is infinite.

aPlease notice that this means that the algorithm did not manage to conclude whether the result is exact or not.
However, it might have been able to conclude if the working precision had been increased.

bIn general, this should be considered as a case of failure and the value stored in res might be completely irrelevant.

247

10.15 Executing Sollya procedures
Objects representing procedures written in Sollya language (see also Section 7.1) can be created using
the Sollya library functions sollya_lib_parse_string and sollya_lib_parse or through execution
of a Sollya script using sollya_lib_execute.

In order to execute such procedure objects on arguments, available as Sollya objects, too, the
functions

∙ sollya_obj_t sollya_lib_execute_procedure(sollya_obj_t proc, ...) and

∙ sollya_obj_t sollya_lib_v_execute_procedure(sollya_obj_t proc, va_list arglist)

may be used. These functions apply the given procedure proc on the following arguments (or the elements
in the argument list arglist). If no argument is needed to execute the procedure, the variadic argument
list shall immediately be terminated using NULL; otherwise the argument list shall be terminated with an
extra NULL argument. An arity test is performed by Sollya before the procedure is executed: if the arity
of the given procedure does not correspond to the actual number of given arguments (and the Sollya
procedure is not variadic), an error object is returned instead of the procedure’s result.

When the functions are used to execute procedures that return a Sollya object, the object is returned
by the function. When the procedure does not use the Sollya return statement or returns the Sollya
void object, a Sollya void object is returned. The user should not forget to deallocate that void object.

10.16 Name of the free variable
The default name for the free variable is the same in the library and in the interactive tool: it is _x_.
In the interactive tool, this name is automatically changed at the first use of an undefined symbol.
Accordingly in library mode, if an object is defined by sollya_lib_parse_string with an expres-
sion containing an undefined symbol, that symbol will become the free variable name if it has not
already been changed before. But what if one does not use sollya_lib_parse_string (because it is
not efficient) but one wants to change the name of the free variable? The name can be changed with
sollya_lib_name_free_variable("some_name").

It is possible to get the current name of the free variable with sollya_lib_get_free_variable_name().
This function returns a char * containing the current name of the free variable. Please note that this
char * is dynamically allocated on the heap and should be cleared after its use with sollya_lib_free()
(see below).

10.17 Commands and functions
Besides some exceptions, every command and every function available in the Sollya interactive tool has
its equivalent (with a very close syntax) in the library. Section 8 of the present documentation gives
the library syntax as well as the interactive tool syntax of each commands and functions. The same
information is available within the interactive tool by typing help some_command. So if one knows the
name of a command or function in the interactive tool, it is easy to recover its library name and signature.

There are some commands and functions available in interactive mode which, for syntactical reasons,
have a different function name in the Sollya library:

∙ The Sollya language construction (obj1)(obj2, obj3, ...) which applies the object obj1 to
the objects obj2, obj3, etc. is expressed in the Sollya library through a call to
sollya_obj_t sollya_lib_apply(sollya_obj_t obj1, sollya_obj_t obj2, ...)
resp. sollya_obj_t sollya_lib_v_apply(sollya_obj_t obj1, sollya_obj_t obj2, va_list).

A particular point is worth mentioning: some functions of the tool such as remez for instance have a
variable number of arguments. For instance, one might call remez(exp(x), 4, [0,1]) or remez(1, 4,
[0,1], 1/exp(x)). This feature is rendered in the C library by the use of variadic functions (functions
with an arbitrary number of arguments), as they are permitted by the C standard. The notable difference
is that there must always be an explicit NULL argument at the end of the function call. Hence
one can write sollya_lib_remez(a, b, c, NULL) or sollya_lib_remez(a, b, c, d, NULL). It is
very easy to forget the NULL argument and to use for instance sollya_lib_remez(a, b, c). This is

248

completely wrong because the memory will be read until a NULL pointer is found. In the best case,
this will lead to an error or a result obviously wrong, but it could also lead to subtle, not-easy-to-debug
errors. The user is advised to be particularly careful with respect to this point.

Each command or function accepting a variable number of arguments comes in a sollya_lib_v_
version accepting a va_list parameter containing the list of optional arguments. For instance, one might
write a function that takes as arguments a function 𝑓 , an interval 𝐼, optionally a weight function 𝑤,
optionally a quality parameter 𝑞. That function would display the minimax obtained when approximating
𝑓 over 𝐼 (possibly with weight 𝑤 and quality 𝑞) by polynomials of degree 𝑛 = 2 to 20. So, that function
would get a variable number of arguments (i.e., a va_list in fact) and pass them straight to remez. In
that case, one needs to use the v_remez version, as the following code shows:

#include <sollya.h>
#include <stdarg.h>

/* Note: we suppose that the library has already been initialized */
void my_function(sollya_obj_t f, sollya_obj_t I, ...) {

sollya_obj_t n, res;
int i;
va_list va;

for(i=2;i<=20;i++) {
n = SOLLYA_CONST(i);
va_start(va, I);
res = sollya_lib_v_remez(f, n, I, va);
sollya_lib_printf("Approximation of degree %b is %b\n", n, res);
va_end(va);
sollya_lib_clear_obj(n);
sollya_lib_clear_obj(res);

}

return;
}

10.18 Warning messages in library mode
10.18.1 Catching warning messages

The philosophy of Sollya is “whenever something is not exact, explicitly warn about that”. This is a nice
feature since this ensures that the user always perfectly knows the degree of confidence they can have in
a result (is it exact? or only faithful? or even purely numerical, without any warranty?) However, it is
sometimes desirable to hide some (or all) of these messages. This is especially true in library mode where
messages coming from Sollya are intermingled with the messages of the main program. The library
hence provides a specific mechanism to catch all messages emitted by the Sollya core and handle each
of them specifically: installation of a callback for messages.

Before describing the principle of the message callback, it seems appropriate to recall that several
mechanisms are available in the interactive tool to filter the messages emitted by Sollya. These mech-
anisms are also available in library mode for completeness. When a message is emitted, it has two
characteristics: a verbosity level and an id (a number uniquely identifying the message). After it has
been emitted, it passes through the following steps where it can be filtered. If it has not been filtered
(and only in this case) it is displayed.

1. If the verbosity level of the message is greater than the value of the environment variable verbosity,
it is filtered.

2. If the environment variable roundingwarnings is set to off and if the message informs the user
that a rounding occurred, it is filtered.

249

3. If the id of the message has been registered with the suppressmessage command, the message is
filtered.

4. If a message callback has been installed and if the message has not been previously filtered, it is
handled by the callback, which decides to filter it or to permit its displaying.

A message callback is a function of the form int my_callback(sollya_msg_t msg, void *data).
It receives as input an object representing the message and a user-defined pointer. It performs whatever
treatment seems appropriate and returns an integer interpreted as a boolean. If the returned value is
false, the message is not displayed. If, on the contrary, the returned value is true, the message is displayed
as usual. By default, no callback is installed and all messages are displayed. To install a callback, use
sollya_lib_install_msg_callback(my_callback, data). The (void *) pointer data is arbitrary
(it can be NULL) and is simply transmitted as second argument at each call of the callback. It can be
used, e.g., to point to a segment of memory where some information should be stored from a call of the
callback to another.

Please remember that, if a message is filtered because of one of the three other mechanisms, it will
never be transmitted to the callback. Hence, in library mode, if one wants to catch every single message
through the callback, one should set the value of verbosity to MAX_INT, set roundingwarnings to on
(this is the default anyway) and one should not use the suppressmessage mechanism.

It is possible to come back to the default behavior, using sollya_lib_uninstall_msg_callback().
Please notice that callbacks do not stack over each other: i.e., if some callback callback1 is installed,
and if one installs another one callback2, then the effect of sollya_lib_uninstall_msg_callback()
is to come back to the default behavior, and not to come back to callback callback1.

Both sollya_lib_install_msg_callback and sollya_lib_uninstall_msg_callback return an in-
teger interpreted as a boolean: false means failure and true means success.

It is possible to get the current callback using sollya_lib_get_msg_callback(cb_ptr, data_ptr).
This stores the current callback at the address referred to by cb_ptr (the type of cb_ptr is hence
int (**)(sollya_msg_t, void *)) and stores the current data pointer at the address referred to by
data_ptr (which has hence (void **) type). The arguments cb_ptr and data_ptr can be NULL in which
case the corresponding argument is not retrieved (please take care of the difference between data_ptr
being NULL and data_ptr pointing to a (void *) pointer which value is NULL). If no callback is currently
installed, the NULL value is stored at the addresses referred to by cb_ptr and data_ptr.

The type sollya_msg_t is indeed a pointer and its content is only accessible during the callback call:
it does not make sense to keep it for further use after the callback call. Currently the type has only two
accessors:

∙ int sollya_lib_get_msg_id(sollya_msg_t msg) returns an integer that identifies the type of
the message. The message types are listed in the file sollya-messages.h. Please note that this file
not only lists the possible identifiers but also defines meaningful names to each possible message
number (e.g., SOLLYA_MSG_UNDEFINED_ERROR is an alias for the number 2 but is more meaningful to
understand what the message is about). It is recommended to use these names instead of numerical
values.

∙ char *sollya_lib_msg_to_text(sollya_msg_t msg) returns a generic string briefly summariz-
ing the contents of the message. Please note that this char * is dynamically allocated on the heap
and should manually be cleared with sollya_lib_free when it becomes useless.

In the future, other accessors could be added (to get the verbosity level at which the message has been
emitted, to get data associated with the message, etc.) The developers of Sollya are open to suggestions
and feature requests on this subject.

As an illustration let us give a few examples of possible use of callbacks:

Example 1: A callback that filters everything.

int hide_everything(sollya_msg_t msg, void *data) {
return 0;

}

250

Example 2: filter everything but the messages indicating that a comparison is uncertain.

int keep_comparison_warnings(sollya_msg_t msg, void *data) {
switch(sollya_lib_get_msg_id(msg)) {

case SOLLYA_MSG_TEST_RELIES_ON_FP_RESULT_THAT_IS_NOT_FAITHFUL:
case SOLLYA_MSG_TEST_RELIES_ON_FP_RESULT:
case SOLLYA_MSG_TEST_RELIES_ON_FP_RESULT_FAITHFUL_BUT_UNDECIDED:
case SOLLYA_MSG_TEST_RELIES_ON_FP_RESULT_FAITHFUL_BUT_NOT_REAL:

return 1;
default:

return 0;
}

}

Example 3: ensuring perfect silence for a particular function call (uses the callback defined in Exam-
ple 1).

...
int (*old_callback)(sollya_msg_t, void *);
void *old_data;
sollya_lib_get_msg_callback(&old_callback, &old_data);
sollya_lib_install_msg_callback(hide_everything, NULL);

/* Here takes place the function call that must be completely silent */
if (old_callback) sollya_lib_install_msg_callback(old_callback, old_data);
...

Example 4: using the (void *) data argument to store information from a call to another.

int set_flag_on_problem(sollya_msg_t msg, void *data) {
switch(sollya_lib_get_msg_id(msg)) {

case SOLLYA_MSG_DOUBLE_ROUNDING_ON_CONVERSION:
*((int *)(data)) = 1;

}
return 1;

}

...

int main() {
int flag_double_rounding = 0;
...
sollya_lib_init();
sollya_lib_install_msg_callback(set_flag_on_problem, &flag_double_rounding);
...

}

More involved examples are possible: for instance, instead of setting a flag, it is possible to keep
in some variable what the last message was. One may even implement a stack mechanism and store
the messages in a stack, in order to handle them later. (Please remember however that sollya_msg_t
is a pointer type and that the sollya_msg_t object received as argument of a callback call has no
more meaning once the callback call returned. If a stack mechanism is implemented it should store
information such as the message ID, or the message text, as given by sollya_lib_get_msg_id and
sollya_lib_msg_to_text, but not the sollya_msg_t object itself.)

251

10.18.2 Emitting warning messages

The Sollya library offers a way to print a message, as if it were produced by the Sollya core. Such a
message will go through the entire process described in the previous section, and can eventually provoke
a callback call if a callback is installed. The function supporting this feature is

void sollya_lib_printlibrarymessage(int verb, const char *str).

The first argument verb is the least verbosity level at which that warning shall be displayed. The second
argument str is the message to be displayed.

When a message is produced with this function, its message ID (when caught by a callback) is
SOLLYA_MSG_GENERIC_SOLLYA_LIBRARY_MSG. An important notice is that the character string returned
by sollya_lib_msg_to_text when such a message is caught by a callback is currently not the ar-
gument str provided to sollya_lib_printlibrarymessage, but is instead a generic message. This
behavior might change in the future.

10.19 Using Sollya in a program that has its own allocation functions
Sollya uses its own allocation functions: as a consequence, pointers that have been allocated by Sollya
functions must be freed using sollya_lib_free instead of the usual free function. Another consequence
is that Sollya registers its own allocation functions to the GMP library, using the mechanism provided
by GMP, so that GMP also uses Sollya allocation functions behind the scene, when the user performs a
call to, e.g., mpz_init, mpfr_init2, etc.

In general, this is completely harmless and the user might even not notice it. However, this is a
problem if Sollya is used in a program that also uses its own allocation functions and that has already
registered these functions to GMP. Actually:

∙ If the main program has already registered allocation functions to GMP and if Sollya is naively ini-
tialized with sollya_lib_init(), Sollya will register its own allocation functions, thus overriding
the previously registered functions.

∙ If the user initializes first Sollya, and then registers its own allocation functions to GMP, the exact
opposite happens: Sollya allocation functions are overridden by those of the user, and this will
likely cause Sollya to crash (or worst, silently behave not reliably).

In order to solve this issue, Sollya provides a chaining mechanism that we are now going to de-
scribe. The idea is the following: suppose that the main program should use a function custom_malloc.
The user should not use mp_set_memory_functions as usual, but should instead initialize Sollya with
the initializing function described above. This will cause Sollya to register an allocation function
sollya_lib_malloc to GMP. This function overloads custom_malloc: when called, it uses custom_malloc
to perform the actual allocation and does nothing else but some internal accounting and verification for
that allocation. To repeat, the actual allocation is done by custom_malloc; hence from the point
of view of the user, the mechanism is completely transparent and equivalent to directly registering
custom_malloc to GMP. The same holds for all other allocation functions: in particular, this is true
for free as well: if a function custom_free is given at the initialization of Sollya, then the function
sollya_lib_free eventually uses custom_free to free the memory.

The initialization function providing this mechanism is:

int sollya_lib_init_with_custom_memory_functions(
void *(*custom_malloc)(size_t),
void *(*custom_calloc)(size_t, size_t),
void *(*custom_realloc)(void *, size_t),
void (*custom_free)(void *),
void *(*custom_realloc_with_size)(void *, size_t, size_t),
void (*custom_free_with_size)(void *, size_t)).

None of the arguments is mandatory: if the user does not want to provide an argument, they may
use NULL as a placeholder for that argument. In that case, the corresponding Sollya default func-
tion will be used. Indeed, the default initializing function sollya_lib_init() is just an alias to
sollya_lib_init_with_custom_memory_functions(NULL, NULL, NULL, NULL, NULL, NULL).

252

Please notice, that if custom_malloc is provided, then the function sollya_lib_malloc will be
defined as an overloaded version of custom_malloc. Hence, custom_malloc will eventually be used for
all the allocations performed by Sollya (including the allocation of memory for its own purpose). This
is true also for custom_calloc, custom_realloc and custom_free. However, this is not the case for
custom_realloc_with_size and custom_free_with_size: these functions are only required for the
registration to GMP and are not used by Sollya itself (except of course when Sollya allocates function
through a call to a GMP, MPFR or MPFI function). Thus, to sum up:

∙ If the user only wants to register their own functions to GMP through Sollya, they only need to
provide custom_malloc, custom_realloc_with_size and custom_free_with_size at the initial-
ization of Sollya (actually an overloaded version will be registered to GMP but this is transparent
for the user, as explained above).

∙ If the user also wants Sollya to use their custom allocation functions for all allocations of memory
by Sollya, then they also need to provide custom_calloc, custom_realloc and custom_free.

Of course, even if the user registers custom_malloc, custom_free, etc., at the initialization of Sollya,
they stay free to use them for their own allocation needs: only allocations performed by GMP (and
consequently MPFR and MPFI) and allocations performed by Sollya have to use the chaining mechanism.
However, for the convenience of the user, the library also provides access to the allocation functions of
Sollya. They are the following:

∙ void sollya_lib_free(void *)

∙ void *sollya_lib_malloc(size_t)

∙ void *sollya_lib_calloc(size_t, size_t)

∙ void *sollya_lib_realloc(void *, size_t).

No access to the overloaded version of custom_realloc_with_size and custom_free_with_size is
provided, but if the user really wants to retrieve them, they can do it with mp_get_memory_functions
since they are registered to GMP.

253

	Compilation and installation of Sollya
	Compilation dependencies
	Sollya command line options

	Introduction
	General principles
	Variables
	Data types
	Booleans
	Numbers
	Rational numbers and rational arithmetic
	Intervals and interval arithmetic
	Functions
	Strings
	Particular values
	Lists
	Structures

	Iterative language elements: assignments, conditional statements and loops
	Blocks
	Assignments
	Conditional statements
	Loops

	Functional language elements: procedures and pattern matching
	Procedures
	Pattern matching

	Commands and functions
	abs
	absolute
	accurateinfnorm
	acos
	acosh
	&&
	annotatefunction
	:.
	
	asciiplot
	asin
	asinh
	atan
	atanh
	autodiff
	autosimplify
	bashevaluate
	bashexecute
	binary
	bind
	boolean
	canonical
	ceil
	chebyshevform
	checkinfnorm
	coeff
	composepolynomials
	@
	constant
	cos
	cosh
	D
	DD
	DE
	decimal
	default
	degree
	denominator
	diam
	dieonerrormode
	diff
	dirtyfindzeros
	dirtyinfnorm
	dirtyintegral
	dirtysimplify
	display
	div
	/
	double
	doubledouble
	doubleextended
	dyadic
	==
	erf
	erfc
	error
	evaluate
	execute
	exp
	expand
	expm1
	exponent
	externalplot
	externalproc
	false
	file
	findzeros
	fixed
	floating
	floor
	fpminimax
	fullparentheses
	function
	gcd
	>=
	getbacktrace
	getsuppressedmessages
	>
	guessdegree
	halfprecision
	head
	hexadecimal
	honorcoeffprec
	hopitalrecursions
	horner
	HP
	implementconstant
	implementpoly
	in
	inf
	infnorm
	integer
	integral
	isbound
	isevaluable
	<=
	length
	library
	libraryconstant
	list of
	log
	log10
	log1p
	log2
	<
	mantissa
	max
	mid
	midpointmode
	min
	-
	mod
	*
	nearestint
	!=
	nop
	!
	numberroots
	numerator
	object
	objectname
	off
	on
	||
	parse
	perturb
	pi
	plot
	+
	points
	postscript
	postscriptfile
	"705E
	powers
	prec
	precision
	.:
	print
	printdouble
	printexpansion
	printsingle
	printxml
	proc
	procedure
	QD
	quad
	quit
	range
	rationalapprox
	rationalmode
	RD
	readfile
	readxml
	relative
	remez
	rename
	restart
	return
	revert
	RN
	round
	roundcoefficients
	roundcorrectly
	roundingwarnings
	RU
	RZ
	searchgal
	SG
	showmessagenumbers
	simplify
	sin
	single
	sinh
	sort
	sqrt
	string
	subpoly
	substitute
	sup
	supnorm
	suppressmessage
	tail
	tan
	tanh
	taylor
	taylorform
	taylorrecursions
	TD
	time
	timing
	tripledouble
	true
	unsuppressmessage
	var
	verbosity
	void
	worstcase
	write
	x

	Appendix: interval arithmetic philosophy in Sollya
	Univariate functions
	Bivariate functions

	Appendix: the Sollya library
	Introduction
	Sollya object data-type
	Conventions in use in the library
	Displaying Sollya objects and numerical values
	Creating Sollya objects
	Numerical constants
	Functional expressions
	Other simple objects
	Lists
	Structures
	Library functions, library constants and procedure functions
	External procedures

	Getting the type of an object
	Recovering the value of a range
	Recovering the value of a numerical constant or a constant expression
	Converting a string from Sollya to C
	Recovering the contents of a Sollya list
	Recovering the contents of a Sollya structure
	Decomposing a functional expression
	Faithfully evaluate a functional expression
	Comparing objects structurally and computing hashes on Sollya objects
	Executing Sollya procedures
	Name of the free variable
	Commands and functions
	Warning messages in library mode
	Catching warning messages
	Emitting warning messages

	Using Sollya in a program that has its own allocation functions

