
Users’ manual for the Sollya tool

Release 1.1

Laboratoire de l’Informatique du Parallélisme

UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668

Sylvain Chevillard
sylvain.chevillard@ens-lyon.fr

Christoph Lauter
christoph.lauter@ens-lyon.fr

Nicolas Jourdan
nicolas.jourdan@ens-lyon.fr

Mioara Joldes
mioara.joldes@ens-lyon.fr

September 18, 2008

License

The Sollya tool is copyright c© 2008 Laboratoire de l’Informatique du Parallélisme - UMR CNRS -
ENS Lyon - UCB Lyon 1 - INRIA 5668.

The Sollya tool is open software. It is distributed and can be used, modified and redistributed
under the terms of the CeCILL-C licence available at http://www.cecill.info/ and reproduced in the
COPYING file of the distribution. The distribution contains parts of other libraries as a support for but
not integral part of Sollya. These libraries are reigned by the GNU Lesser General Public License that
is available at http://www.gnu.org/licenses/ and reproduced in the COPYING file of the distribution.

Contents

1 Compilation and installation of the Sollya tool 5
1.1 Compilation dependencies . 5
1.2 Sollya command line options . 5

2 Introduction 6

3 General principles 8

4 Variables 9

5 Data types 11
5.1 Booleans . 11
5.2 Numbers . 11
5.3 Intervals . 12
5.4 Functions . 13
5.5 Strings . 14
5.6 Particular values . 14
5.7 Lists . 14

1

sylvain.chevillard@ens-lyon.fr
christoph.lauter@ens-lyon.fr
nicolas.jourdan@ens-lyon.fr
mioara.joldes@ens-lyon.fr
http://www.cecill.info/
http://www.gnu.org/licenses/

6 Iterative language elements: assignments, conditional statements and loops 16
6.1 Blocks . 16
6.2 Assignments . 16
6.3 Conditional statements . 17
6.4 Loops . 17

7 Functional language elements: procedures 19

8 Commands and functions 20
8.1 abs . 20
8.2 absolute . 21
8.3 accurateinfnorm . 21
8.4 acos . 22
8.5 acosh . 22
8.6 and . 22
8.7 append . 23
8.8 approx . 24
8.9 asciiplot . 25
8.10 asin . 27
8.11 asinh . 27
8.12 atan . 27
8.13 atanh . 27
8.14 autosimplify . 28
8.15 bashexecute . 29
8.16 binary . 29
8.17 boolean . 30
8.18 canonical . 30
8.19 ceil . 31
8.20 checkinfnorm . 31
8.21 coeff . 32
8.22 concat . 33
8.23 constant . 33
8.24 cos . 34
8.25 cosh . 34
8.26 decimal . 34
8.27 default . 34
8.28 degree . 35
8.29 denominator . 35
8.30 diam . 36
8.31 diff . 37
8.32 dirtyfindzeros . 37
8.33 dirtyinfnorm . 38
8.34 dirtyintegral . 39
8.35 display . 40
8.36 divide . 41
8.37 double . 42
8.38 doubledouble . 42
8.39 doubleextended . 43
8.40 dyadic . 44
8.41 equal . 44
8.42 erf . 45
8.43 erfc . 45
8.44 error . 46
8.45 evaluate . 46
8.46 execute . 48
8.47 exp . 49

2

8.48 expand . 49
8.49 expm1 . 50
8.50 exponent . 50
8.51 externalplot . 50
8.52 externalproc . 51
8.53 false . 53
8.54 file . 53
8.55 findzeros . 54
8.56 fixed . 54
8.57 floating . 55
8.58 floor . 55
8.59 fpminimax . 55
8.60 fullparentheses . 58
8.61 function . 59
8.62 ge . 59
8.63 gt . 60
8.64 guessdegree . 61
8.65 head . 62
8.66 hexadecimal . 62
8.67 honorcoeffprec . 62
8.68 hopitalrecursions . 63
8.69 horner . 64
8.70 implementpoly . 64
8.71 inf . 67
8.72 infnorm . 68
8.73 integer . 70
8.74 integral . 70
8.75 isbound . 71
8.76 isevaluable . 72
8.77 le . 73
8.78 length . 73
8.79 library . 74
8.80 listof . 75
8.81 log . 75
8.82 log10 . 75
8.83 log1p . 76
8.84 log2 . 76
8.85 lt . 76
8.86 mantissa . 77
8.87 mid . 77
8.88 midpointmode . 78
8.89 minus . 78
8.90 mult . 79
8.91 neq . 80
8.92 nop . 81
8.93 not . 81
8.94 numerator . 82
8.95 off . 82
8.96 on . 83
8.97 or . 83
8.98 parse . 84
8.99 perturb . 84
8.100pi . 85
8.101plot . 86
8.102plus . 87
8.103points . 88

3

8.104postscript . 88
8.105postscriptfile . 88
8.106power . 89
8.107powers . 90
8.108prec . 90
8.109precision . 90
8.110prepend . 91
8.111print . 92
8.112printexpansion . 95
8.113printfloat . 96
8.114printhexa . 96
8.115printxml . 97
8.116proc . 98
8.117procedure . 102
8.118quit . 103
8.119range . 103
8.120rationalapprox . 104
8.121rd . 105
8.122readfile . 105
8.123readxml . 106
8.124relative . 106
8.125remez . 107
8.126rename . 108
8.127restart . 109
8.128return . 110
8.129revert . 111
8.130rn . 112
8.131round . 112
8.132roundcoefficients . 113
8.133roundcorrectly . 114
8.134roundingwarnings . 115
8.135ru . 115
8.136rz . 116
8.137searchgal . 116
8.138simplify . 117
8.139simplifysafe . 118
8.140sin . 119
8.141sinh . 119
8.142sort . 119
8.143sqrt . 119
8.144string . 120
8.145subpoly . 120
8.146substitute . 121
8.147sup . 121
8.148tail . 122
8.149tan . 123
8.150tanh . 123
8.151taylor . 123
8.152taylorrecursions . 124
8.153timing . 124
8.154tripledouble . 125
8.155true . 126
8.156var . 126
8.157verbosity . 127
8.158void . 127
8.159worstcase . 128

4

8.160write . 129

1 Compilation and installation of the Sollya tool

1.1 Compilation dependencies

The Sollya distribution can be compiled and installed using the usual ./configure, make, make
install procedure. Besides a C compiler, Sollya needs the following software libraries and tools to
be installed. The ./configure script checks for the installation of the libraries. However Sollya will
build without error if some of its external tools is not installed. In this case an error will be produced at
runtime.

• GMP

• MPFR

• MPFI

• fplll

• libxml2

• gnuplot

The use of the external tool rlwrap is highly recommended but not indispensable. Use the -A options
of rlwrap for correctly displayed ANSI X3.64/ ISO/IEC 6429 colored prompts (see below).

1.2 Sollya command line options

In principle Sollya reads all its input on standard input and responds on standard output. Reading of
files is internally supported but no file names can be given for input when the tool is started. Remark
that it is nevertheless possible to use Sollya on input contained in a file; just redirect standard input to
the file, writing on bash for example:

~/% sollya < myfile.sollya

All configurations of the internal state of the tool are done by commands given on the Sollya prompt.
Nevertheless, some command line options are supported; they work at a very basic I/O-level and can
therefore not be implemented as commands.

The following options are supported when calling Sollya:

• --nocolor: Sollya supports coloring of the output using ANSI X3.64/ ISO/IEC 6429 escape
sequences. Coloring is deactivated when Sollya is connected on standard input to a file that is
not a terminal. This option forces the deactivation of ANSI coloring. This might be necessary on
very old grey-scale terminals or when encountering problems with old versions of rlwrap.

• --noprompt: Sollya prints a prompt symbol when connected on standard input to a pseudo-file
that is a terminal. The option deactivates the prompt.

• --oldrlwrapcompatible: This option is deprecated. It makes Sollya emit a wrong coloring
escape sequence for making it compatible with versions of rlwrap that do not support the -A
option. The option is considered as a hack since it is known to garble the output of the tool under
some particular circumstances.

• --help: Prints help on the usage of the tool and quits.

5

2 Introduction

Sollya is an interactive tool for handling numerical functions and working with arbitrary precision. It can
evaluate functions accurately, compute polynomial approximations of functions, automatically implement
polynomials for use in math libraries, plot functions, compute infinite norms, etc. The language Sollya
comes with is a full-featured script programming language with support for procedures etc.

Let us begin this manual with an example. Sollya does not allow command line edition; since that
may quickly become uncomfortable, we highly suggest to use the software rlwrap with Sollya:

~/% rlwrap sollya
>

Sollya manipulates only functions in one variable. The first time that an unbound variable is used,
this name is fixed. It will be used to refer to the free variable. For instance, try

> f = sin(x)/x;
> g = cos(y)-1;
Warning: the identifier "y" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "y" as "x".
> g;
cos(x) - 1

Now, the name x can only be used to refer to the free variable:

> x = 3;
Warning: the identifier "x" is already bound to the free variable, to a library
function or to an external procedure.
The command will have no effect.
Warning: the last assignment will have no effect.

If you really want to unbound x, you can use the rename command and change the name of the free
variable:

> rename(x,y);
Information: the free variable has been renamed from "x" to "y".
> g;
cos(y) - 1
> x=3;
> x;
3

As you have seen, you can name functions and easily work with. The basic thing to do with a function
is to evaluate it at some point:

> f(-2);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.45464871341284084769800993295587242135112748572394
> evaluate(f,-2);
0.45464871341284084769800993295587242135112748572394

The printed value is generally a faithful rounding of the exact value at the working precision. The
working precision is controlled by the global variable prec:

6

> prec;
165
> prec=200;
The precision has been set to 200 bits.
> prec;
200
> f(-2);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.4546487134128408476980099329558724213511274857239451341894865

Sometimes, a faithful rounding cannot easily be computed. In such a case, an approximated value is
printed:

> sin(pi);
Warning: rounding has happened. The value displayed is *NOT* a faithful rounding
of the true result.
2.370282108802210278292182237916205884206827316800332031959797e-15413

The philosophy of Sollya is: whenever something is not exact, print a warning. This explains the
warnings in the previous examples. If the result can be shown to be exact, there is no warning:

> sin(0);
0

Let us finish this Section with a small complete example that shows a bit of what can be done with
Sollya:

> restart;
The tool has been restarted.
> prec=50;
The precision has been set to 50 bits.
> f=cos(2*exp(x));
> d=[-1/8;1/8];
> p=remez(f,2,d);
> derivativeZeros = dirtyfindzeros(diff(p-f),d);
> derivativeZeros = inf(d).:derivativeZeros:.sup(d);
> max=0;
> for t in derivativeZeros do {
> r = evaluate(abs(p-f), t);
> if r > max then { max=r; argmax=t; };
> };
> print("The infinite norm of", p-f, "is", max, "and is reached at", argmax);
The infinite norm of -0.416265572875373 + x * (-1.798067209218835 + x * (-3.8971
0727747639e-2)) - cos(2 * exp(x)) is 8.630659443624325e-4 and is reached at -5.8
01672331417684e-2

In this example, we define a function f , an interval d and we compute the best degree-4 polynomial
approximation of f on d with respect to the infinite norm. In other words, maxx∈d{|p(x) − f(x)|} is
minimal amongst polynomials with degree not greater than 4. Then, we compute the list of the zeros of
the derivative of p − f and add the bounds of d to this list. Finally, we evaluate |p − f | for each point
in the list and store the maximum and the point where it is reached. We conclude by printing the result
in a formatted way.

Note that you do not really need to use such a script for computing infinite norm; as we will see, the
command dirtyinfnorm does this for you.

7

3 General principles

The first goal of Sollya is to help people to use numerical functions and numerical algorithms in a safe
way. It is first designed to be used interactively but it can also be used in scripts1.

One of the particularities of Sollya is to work with multi-precision arithmetic (it uses the MPFR
library). For safety purposes, Sollya knows how to use interval arithmetic. It uses the interval arithmetic
to produce tight and safe results with the precision required by the user.

The general philosophy of Sollya is: When you can make a computation exactly and sufficiently
quickly, do it; when you cannot, do not, unless you have been explicitly asked for.

The precision of the tools is set by the global variable prec. It indicates the number of bits used to
represent the constants in Sollya. In general, the variable prec determines the precision of the outputs
of commands: more precisely, the command will internally determine what precision should be used
during the computations in order to ensure that the output is a faithfully rounded result with prec bits.

For decidability and efficiency reasons, this general principle cannot be applied every time, so be
careful. Moreover certain commands are known to be unsafe: they give in general excellent results and
give almost prec correct bits in output for everyday examples. However they are just heuristic and
should not be used when the result must be safe. See the documentation of each command to know
precisely how confident you can be with its result.

A second principle (that comes together with the first one) is: When a computation leads to inexact
results, inform the user by a warning. This can be quite irritating in some circumstances: in particular
if you are using Sollya within other scripts. The global variable verbosity lets you change the level of
verbosity of Sollya. When set to 0, Sollya becomes completely silent on stdout and prints only very
important messages on stderr. Increase verbosity if you want more information about what Sollya
is doing. Note that when you affect a value to a global variable, a message is always printed even if
verbosity is set to 0. In order to silently affect a global variable, use !:

> prec=30;
The precision has been set to 30 bits.
> prec=30!;
>

For conviviality reasons, values are displayed in decimal by default. This lets a normal human being
understand the numbers he or she manipulates. But since constants are internally represented in binary,
this causes permanent conversions that are sources of roundings. Thus you are loosing in accuracy and
Sollya is always complaining about inexact results. If you just want to store or communicate your
results (to another tools for instance) you can use bit-exact representations available in Sollya. The
global variable display defines the way constants are displayed. Here is an example of the five available
modes:

1Remark: some of the behaviors of Sollya slightly change when used in scripts. For example, no prompt is printed.

8

> prec=30!;
> a = 17.25;
> display=decimal;
Display mode is decimal numbers.
> a;
1.725e1
> display=binary;
Display mode is binary numbers.
> a;
1.000101_2 * 2^(4)
> display=powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> a;
69 * 2^(-2)
> display=dyadic;
Display mode is dyadic numbers.
> a;
69b-2
> display=hexadecimal;
Display mode is hexadecimal numbers.
> a;
0x1.14p4

Remark that it is possible to maintain the general verbosity level at some higher setting while de-
activating all warnings on roundings. This feature is controlled using the roundingwarnings global
variable. It may be set to on or off. By default, the warnings are activated (roundingwarnings =
on) when Sollya is connected on standard input to a pseudo-file that represents a terminal. They are
deactivated when Sollya is connected on standard input to a real file. See 8.134 for further details; the
behavior is illustrated with examples there.

As always, the symbol e means ×10�. The same way the symbol b means ×2�. The symbol p
means ×16� and is used only with the 0x prefix. The prefix 0x indicates that the digits of the following
number until a symbol p or white-space are hexadecimal. The suffix 2 indicates to Sollya that the
previous number has been written in binary. Sollya can parse these notations even if you are not in the
corresponding display mode, so you can always use them.

You can also use memory-dump hexadecimal notation frequently used to represent IEEE 754 double
and single precision numbers. Since this notation does not allow for exactly representing numbers
with arbitrary precision, there is no corresponding display mode. However, the commands printhexa
respectively printfloat round the value to the nearest double respectively single. The number is then
printed in hexadecimal as the integer number corresponding to the memory representation of the IEEE
754 double or single number:

> printhexa(a);
0x4031400000000000
> printfloat(a);
0x418a0000

Sollya can parse these memory-dump hexadecimal notation back in any display mode. Remark
that the difference of this memory-dump notation with the hexadecimal notation (as defined above) is
made by the presence or absence of a p indicator.

4 Variables

As already explained, Sollya can manipulate variate functional expressions in one variable. These
expressions contain a unique free variable the name of which is fixed by its first usage in an expression

9

that is not a left-hand-side of an assignment. This global and unique free variable is a variable in the
mathematical sense of the term.

Sollya also provides variables in the sense programming languages give to the term. These variables,
that must be different in their name from the global free variable, may be global or declared and attached
to a block of statements, i.e. a begin-end-block. These programming language variables may hold any
object of the Sollya language, as for example functional expressions, strings, intervals, constant values,
procedures, external functions and procedures, etc.

Global variables need not to be declared. They start existing, i.e. can be correctly used in expressions
that are not left-hand-sides of assignments, when they are assigned a value in an assignment. Since they
are global, this kind of variables is recommended only for small Sollya scripts. Larger scripts with code
reuse should use declared variables in order to avoid name clashes for example in loop variables.

Declared variables are attached to a begin-end-block. The block structure builds scopes for declared
variables. Declared variables in inner scopes shadow variables (global and declared) of outer scopes. The
global free variable, i.e. the mathematical variable for variate functional expressions in one variable,
cannot be shadowed. Variables are declared using var keyword. See section 8.156 for details on its usage
and semantic.

The following code examples illustrate the usage of variables.

> f = exp(x);
> f;
exp(x)
> a = "Hello world";
> a;
Hello world
> b = 5;
> f(b);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.48413159102576603421115580040552279623487667593878e2
> {var b; b = 4; f(b); };
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
5.45981500331442390781102612028608784027907370386137e1
> {var x; x = 3; };
Warning: the identifier "x" is already bound to the current free variable.
It cannot be declared as a local variable. The declaration of "x" will have no e
ffect.
Warning: the identifier "x" is already bound to the free variable, to a library
function or to an external procedure.
The command will have no effect.
Warning: the last assignment will have no effect.
> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1
true
5
3
> a;
Hello world

Remark that a variable identifier, just as every identifier in Sollya, contains at least one character,
starting with a ASCII letter or one of the special symbols “ ”, “$” or “§” and continuing with ASCII
letters, special symbols or numerical digits.

10

5 Data types

Sollya has a (very) basic system of types. If you try to perform an illicit operation (such as adding a
number and a string, for instance), you will get a typing error. Let us see the available data types.

5.1 Booleans

There are two special values true and false. Boolean expressions can be constructed using the boolean
connectors && (and), || (or), ! (not), and comparisons.

The comparison operators <, <=, > and >= can only be used between two numbers or constant
expressions.

The comparison operators == and != are polymorphic. You can use it to compare any two objects,
like two strings, two intervals, etc. Note that testing the equality between two functions will return true
if and only if the expression trees representing the two functions are exactly the same. See 8.44 for an
exception concerning the special object error. Example:

> 1+x==1+x;
true

5.2 Numbers

Sollya represents numbers as binary multi-precision floating-point values. For integer values and values
in dyadic, binary, hexadecimal or memory dump notation, it automatically uses a precision needed for
representing the value exactly. Additionally, automatic precision adaption takes place for all integer
values (even in decimal notation) written without the exponent sign e or with the exponent sign e and
an exponent sufficiently small that they are less than 10999. Otherwise the values are represented with the
current precision prec. A number in an expression is rounded to the precision prec when the expression
gets evaluated:

> prec=12!;
> 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
4098
> 4097.1+1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
4099

Note that each variable has its own precision that corresponds to its intrinsic precision or, if it cannot
be represented, to the value of prec when the variable was set. Thus you can work with variables having
a precision bigger than the current precision.

The same way, if you define a function that refers to some constant, this constant is stored in the
function with the current precision and will keep this value in the future, even if prec becomes smaller.

If you define a function that refers to some variable, the precision of the variable is kept, independently
of the current precision:

11

> prec = 50!;
> a = 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 50 bits.
If safe computation is needed, try to increase the precision.
> prec = 12!;
> f = x + a;
> g = x + 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
> prec = 120;
The precision has been set to 120 bits.
> f;
4.097099999999998544808477163314819335e3 + x
> g;
4098 + x

5.3 Intervals

Intervals are composed of two numbers or constant expressions representing the lower and the upper
bound. These values are separated either by commas or semi-colons:

> d=[1;2];
> d2=[1,1+1];
> d==d2;
true

If bounds are defined by constant expressions, these are evaluated to floating-point numbers using the
current precision. Numbers or variables containing numbers keep their precision for the interval bounds.
Interval bound evaluation is performed in a way that ensures the inclusion property: all points in the
original, unevaluated interval will be contained in the interval with its bounds evaluated to floating-point
numbers. Remark that evaluation bounds defined by constant expressions includes π:

> prec = 300!;
> a = 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 300 bits.
If safe computation is needed, try to increase the precision.
> prec = 12!;
> d = [4097.1; a];
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
Warning: the bounds of the given range are in wrong order. Will reverse them.
> prec = 300!;
> d;
[4.0971e3;4098]
> prec = 30!;
> [-pi;pi];
Warning: the given expression is not a constant but an expression to evaluate.
Warning: the given expression is not a constant but an expression to evaluate.
[-3.141592659;3.141592659]

You can get the upper-bound (respectively the lower-bound)) of an interval with the function sup
(respectively inf). The middle of the interval is got with the function mid. Note that these functions

12

can also be used on numbers (in that case, the number is interpreted as an interval containing only one
single point. Thus the functions inf, mid and sup are just the identity):

> d=[1;3];
> inf(d);
1
> mid(d);
2
> sup(4);
4

Remark that the mid operator never provokes a rounding. It is rewritten as an unevaluated expression
in terms of inf and sup.

5.4 Functions

Sollya knows only functions with one single variable. The first time in a session that an unbound name
is used (without being assigned) it determines the name used to refer to the free variable.

The basic functions available in Sollya are the following:

• +, -, *, /, ^

• sqrt

• abs

• sin, cos, tan, sinh, cosh, tanh

• asin, acos, atan, asinh, atanh

• exp, expm1 (defined as expm1(x) = exp(x)− 1)

• log (natural logarithm), log2 (binary logarithm), log10 (decimal logarithm), log1p (defined as
log1p(x) = log(1 + x))

• erf, erfc

The constant π is available through the keyword pi as a 0-ary function: its behavior is exactly the
same as if it were a constant with an infinite precision:

> display=binary!;
> prec=12!;
> a=pi;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.10010010001_2 * 2^(1)
> prec=30!;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.10010010000111111011010101001_2 * 2^(1)

13

5.5 Strings

Anything written between quotes is interpreted as a string. The infix operator @ concatenates two strings.
To get the length of a string, use the length function. You can access the i-th character of a string using
brackets (see the example below). There is no character type in Sollya: the i-th character of a string is
returned as a string itself.

> s1 = "Hello "; s2 = "World!";
> s = s1@s2;
> length(s);
12
> s[0];
H
> s[11];
!

Strings may contain the following escape sequences: \\, \¨, \?, \´, \n, \t, \a, \b, \f, \r, \v,
\x[hexadecimal number] and \[octal number]. Refer to the C99 standard for their meaning.

5.6 Particular values

Sollya knows some particular values. These values do not really have a type but they can be stored in
variables and in lists. A (possibly not exhaustive) list of such values is the following:

• on, off (see sections 8.96 and 8.95)

• dyadic, powers, binary, decimal, hexadecimal (see sections 8.40, 8.107, 8.16, 8.26 and 8.66)

• file, postscript, postscriptfile (see sections 8.54, 8.104 and 8.105)

• RU, RD, RN, RZ (see sections 8.135, 8.121, 8.130 and 8.136)

• absolute, relative (see sections 8.2 and 8.124)

• floating, fixed (see sections 8.57 and 8.56)

• double, doubleextended, doubledouble, tripledouble (see sections 8.37, 8.39, 8.38 and 8.154)

• D, DE, DD, TD (see sections 8.37, 8.39, 8.38 and 8.154)

• perturb (see section 8.99)

• honorcoeffprec (see section 8.67)

• default (see section 8.27)

• error (see section 8.44)

• void (see section 8.158)

5.7 Lists

Objects can be grouped into lists. A list can contain elements with different types. As for strings, you
can concatenate two lists with @. The function length gives also the length of a list.

You can prepend an element to a list using .: (in O(1)) and you can append an element to a list
using :. (in O(n)). The following example illustrates some features:

14

> l = [| "foo" |];
> l = l:.1;
> l = "bar".:l;
> l;
[|"bar", "foo", 1|]
> l[1];
foo
> l@l;
[|"bar", "foo", 1, "bar", "foo", 1|]

Lists can be considered as arrays and elements of lists can be referenced using brackets. Possible
indices start at 0. The following example illustrates this point:

> l = [|1,2,3,4,5|];
> l;
[|1, 2, 3, 4, 5|]
> l[3];
4

Remark that the complexity for accessing an element of the list using indices is O(n).
Lists may contain ellipses indicated by ,..., between elements that are constant and evaluate to

integers that are incrementally ordered. Sollya translates such ellipses to the full list upon evaluation.
Using ellipses between elements that are not constants is not allowed. This feature is provided for ease
of programming; remark that the complexity of expanding such lists is high. For illustration, see the
following example:

> [|1,...,5|];
[|1, 2, 3, 4, 5|]
> [|-5,...,5|];
[|-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5|]
> [|3,...,1|];
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> [|true,...,false|];
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

Lists may be continued to infinity by means of the ... indicator after the last element given. At least
one element must explicitly be given. If the last element given is a constant expression that evaluates to
an integer, the list is considered as continued to infinity by all integers greater than that last element.
If the last element is another object, the list is considered as continued to infinity by re-duplicating this
last element. Remark that bracket notation is supported for such end-elliptic lists even for implicitly
given elements. However, evaluation complexity is high. Combinations of ellipses inside a list and in its
end are possible. The usage of lists described here is best illustrated by the following examples:

15

> l = [|1,2,true,3...|];
> l;
[|1, 2, true, 3...|]
> l[2];
true
> l[3];
3
> l[4];
4
> l[1200];
1200
> l = [|1,...,5,true...|];
> l;
[|1, 2, 3, 4, 5, true...|]
> l[1200];
true

6 Iterative language elements: assignments, conditional state-
ments and loops

6.1 Blocks

Statements in Sollya can be regrouped in blocks, so-called begin-end-blocks. This can be done using
the keywords begin and end or their shorter variants { and }. Blocks declared this way are considered as
one single statement. As already explained in section 4, using begin-end-blocks also opens the possibility
of declaring variables through the keyword var.

6.2 Assignments

Sollya has two different assignment operators, = and :=. The assignment operator = assigns its right-
hand-object “as is”, i.e. without evaluating functional expressions. For instance, i = i + 1; will
dereferentiate the identifier i with some content, notate it y, build up the expression (function) y+1 and
assign this expression back to i. In the example, if i stood for the value 1000, the statement i = i +
1; will assign 1000 + 1 – and not 1001 – to i. The assignment operator := evaluates constant functional
expressions before assigning them. On other expressions it behaves like =. Still in the example, the
statement i := i + 1; really assigns 1001 to i.

Both Sollya assignment operators support indexing of lists or strings elements using brackets on the
left-hand-side of the assignment operator. The indexed element of the list or string gets replaced by the
right-hand-side of the assignment operator. When indexing strings this way, that right-hand side must
evaluate to a string of length 1. End-elliptic lists are supported with their usual semantic for this kind
of assignment. When referencing and assigning a value in the implicit part of the end-elliptic list, the
list gets expanded to the corresponding length. The indexing of lists on left-hand sides of assignments is
reduced to the first order. Multiple indexing of lists of lists is not supported for complexity reasons.

The following examples well illustrate the behavior of assignment statements:

16

> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> i = 1000;
> i = i + 1;
> print(i);
1000 + 1
> i := i + 1;
> print(i);
1002
> l = [|1,...,5|];
> print(l);
[|1, 2, 3, 4, 5|]
> l[3] = l[3] + 1;
> l[4] := l[4] + 1;
> print(l);
[|1, 2, 3, 4 + 1, 6|]
> l[5] = true;
> l;
[|1, 2, 3, 5, 6, true|]
> s = "Hello world";
> s;
Hello world
> s[1] = "a";
> s;
Hallo world
> l = [|true,1,...,5,9...|];
> l;
[|true, 1, 2, 3, 4, 5, 9...|]
> l[13] = "Hello";
> l;
[|true, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, "Hello"...|]

6.3 Conditional statements

Sollya supports conditional statements expressed with the keywords if, then and optionally else.
Remark that only conditional statements are supported not conditional expressions.

The following examples illustrate both syntax and semantic of conditional statements in Sollya.
Concerning syntax, remark also that there must not be any semicolon before the else keyword.

> a = 3;
> b = 4;
> if (a == b) then print("Hello world");
> b = 3;
> if (a == b) then print("Hello world");
Hello world
> if (a == b) then print("You are telling the truth") else print("Liar!");
You are telling the truth

6.4 Loops

Sollya supports three kinds of loops. General while-condition loops can be expressed using the keywords
while and do. Remark that the condition test is executed always before the loop, there is no do-until-
condition loop. Consider the following examples for both syntax and semantic:

17

> verbosity = 0!;
> prec = 30!;
> i = 5;
> while (expm1(i) > 0) do { expm1(i); i := i - 1; };
1.474131591e2
5.359815e1
1.908553692e1
6.3890561
1.718281827
> print(i);
0

The second kind of loops are loops on a variable ranging from a numerical start value and a end
value. These kind of loops can be expressed using the keywords for, from, to, do and optionally by.
The by statement indicates the width of the steps on the variable from the start value to the end value.
Once again, syntax and semantic are best explained with an example:

> for i from 1 to 5 do print ("Hello world",i);
Hello world 1
Hello world 2
Hello world 3
Hello world 4
Hello world 5
> for i from 2 to 1 by -0.5 do print("Hello world",i);
Hello world 2
Hello world 1.5
Hello world 1

The third kind of loops are loops on a variables ranging on values contained in a list. In order to
ensure the termination of the loop, that list must not be end-elliptic. The loop is expressed using the
keywords for, in and do as in the following examples:

> l = [|true, false, 1,...,4, "Hello", exp(x)|];
> for i in l do i;
true
false
1
2
3
4
Hello
exp(x)

For both types of for loops, assigning the loop variable is allowed and possible. If the loop terminates,
the loop variable will contain the value that made the loop condition fail. Consider the following examples:

> for i from 1 to 5 do { if (i == 3) then i = 4 else i; };
1
2
5
> i;
6

18

7 Functional language elements: procedures

Sollya has some elements of functional languages. In order to avoid confusion with mathematical
functions, the associated programming objects are called procedures in Sollya.

Sollya procedures are common objects that can be, for example, assigned to variables or stored
in lists. Procedures are declared by the proc keyword; see section 8.116 for details. The returned
procedure object must then be assigned to a variable and can hence be applied to arguments with common
application syntax. The procedure keyword provides an abbreviation for declaring and assigning a
procedure; see section 8.117 for details.

Sollya procedures can return objects using the return keyword at the end of the begin-end-block
of the procedure. Section 8.128 gives details on the usage of return. Procedures further can take any
type of object in argument, in particular also other procedures that are then applied to arguments.
Procedures can be declared inside other procedures.

Remark that declaring a procedure does not involve any evaluation or other interpretation of the
procedure body. In particular, this means that constants are evaluated to floating-point values inside
Sollya when the procedure is applied to actual parameters and the global precision valid at this moment.

Sollya procedures are well illustrated by the following examples:

19

> succ = proc(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
begin
nop;
return (n) + (1);
end
> add = proc(m,n) { var res; res := m + n; return res; };
> add(5,6);
11
> hey = proc() { print("Hello world."); };
> hey();
Hello world.
> print(hey());
Hello world.
void
> hey;
proc()
begin
print("Hello world.");
return void;
end
> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };
> fac(5);
120
> fac(11);
39916800
> fac;
proc(n)
begin
var res;
if (n) == (0) then
res := 1
else
res := (n) * (fac((n) - (1)));
return res;
end

Sollya also supports external procedures, i.e. procedures written in C (or some other language) and
dynamically bound to Sollya identifiers. See 8.52 for details.

8 Commands and functions

8.1 abs

Name: abs
the absolute value.

Description:

20

• abs is the absolute value function. abs(x)=
{

x x > 0
−x x ≤ 0 .

8.2 absolute

Name: absolute
indicates an absolute error for externalplot

Usage:

absolute : absolute|relative

Description:

• The use of absolute in the command externalplot indicates that during plotting in externalplot
an absolute error is to be considered.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",absolute,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.51), relative (8.124), bashexecute (8.15)

8.3 accurateinfnorm

Name: accurateinfnorm
computes a faithful rounding of the infinite norm of a function

Usage:

accurateinfnorm(function,range,constant) : (function, range, constant) → constant
accurateinfnorm(function,range,constant,exclusion range 1,...,exclusion range n) : (function, range,

constant, range, ..., range) → constant

Parameters:

• function represents the function whose infinite norm is to be computed

• range represents the infinite norm is to be considered on

• constant represents the number of bits in the significant of the result

• exclusion range 1 through exclusion range n represent ranges to be excluded

Description:

• The command accurateinfnorm computes an upper bound to the infinite norm of function func-
tion in range. This upper bound is the least floating-point number greater than the value of the
infinite norm that lies in the set of dyadic floating point numbers having constant significant man-
tissa bits. This means the value accurateinfnorm evaluates to is at the time an upper bound and
a faithful rounding to constant bits of the infinite norm of function function on range range.

If given, the fourth and further arguments of the command accurateinfnorm, exclusion range 1
through exclusion range n the infinite norm of the function function is not to be considered on.

Example 1:

21

> p = remez(exp(x), 5, [-1;1]);
> accurateinfnorm(p - exp(x), [-1;1], 20);
4.52055246569216251373291015625e-5
> accurateinfnorm(p - exp(x), [-1;1], 30);
4.520552107578623690642416477203369140625e-5
> accurateinfnorm(p - exp(x), [-1;1], 40);
4.5205521043867324948450914234854280948638916015625e-5

Example 2:

> p = remez(exp(x), 5, [-1;1]);
> midpointmode = on!;
> infnorm(p - exp(x), [-1;1]);
0.45205~5/7~e-4
> accurateinfnorm(p - exp(x), [-1;1], 40);
4.5205521043867324948450914234854280948638916015625e-5

See also: infnorm (8.72), dirtyinfnorm (8.33), checkinfnorm (8.20), remez (8.125), diam (8.30)

8.4 acos

Name: acos
the arccosine function.

Description:

• acos is the inverse of the function cos: acos(y) is the unique number x ∈ [0;π] such that cos(x)=y.

• It is defined only for y ∈ [−1; 1].

See also: cos (8.24)

8.5 acosh

Name: acosh
the arg-hyperbolic cosine function.

Description:

• acosh is the inverse of the function cosh: acosh(y) is the unique number x ∈ [0; +∞] such that
cosh(x)=y.

• It is defined only for y ∈ [0; +∞].

See also: cosh (8.25)

8.6 and

Name: &&
boolean AND operator

Usage:

expr1 && expr2 : (boolean, boolean) → boolean

Parameters:

• expr1 and expr2 represent boolean expressions

Description:

22

• && evaluates to the boolean AND of the two boolean expressions expr1 and expr2. && evaluates
to true iff both expr1 and expr2 evaluate to true.

Example 1:

> true && false;
false

Example 2:

> (1 == exp(0)) && (0 == log(1));
true

See also: || (8.97), ! (8.93)

8.7 append

Name: :.
add an element at the end of a list.

Usage:

L:.x : (list, any type) → list

Parameters:

• L is a list (possibly empty).

• x is an object of any type.

Description:

• :. adds the element x at the end of the list L.

• Note that since x may be of any type, it can be in particular a list.

Example 1:

> [|2,3,4|]:.5;
[|2, 3, 4, 5|]

Example 2:

> [|1,2,3|]:.[|4,5,6|];
[|1, 2, 3, [|4, 5, 6|]|]

Example 3:

> [||]:.1;
[|1|]

See also: .: (8.110), @ (8.22)

23

8.8 approx

Name: ∼
floating-point evaluation of a constant expression

Usage:

∼ expression : function → constant
∼ something : any type → any type

Parameters:

• expression stands for an expression that is a constant

• something stands for some language element that is not a constant expression

Description:

• ∼ expression evaluates the expression that is a constant term to a floating-point constant. The
evaluation may involve a rounding. If expression is not a constant, the evaluated constant is a
faithful rounding of expression with precision bits, unless the expression is exactly 0 as a result
of cancellation. In the latter case, a floating-point approximation of some (unknown) accuracy is
returned.

• ∼ does not do anything on all language elements that are not a constant expression. In other words,
it behaves like the identity function on any type that is not a constant expression. It can hence be
used in any place where one wants to be sure that expressions are simplified using floating-point
computations to constants of a known precision, regardless of the type of actual language elements.

• ∼ error evaluates to error and provokes a warning.

• ∼ is a prefix operator not requiring parentheses. Its precedence is the same as for the unary + and
− operators. It cannot be repeatedly used without brackets.

Example 1:

> print(exp(5));
exp(5)
> print(~ exp(5));
1.48413159102576603421115580040552279623487667593878e2

Example 2:

> autosimplify = off!;

Example 3:

> print(~sin(5 * pi));
-4.3878064621853914052425209013193794551397356335691e-12715

Example 4:

> print(~exp(x));
exp(x)
> print(~ "Hello");
Hello

Example 5:

> print(~exp(x*5*Pi));
exp((pi) * 5 * x)
> print(exp(x* ~(5*Pi)));
exp(x * 1.57079632679489661923132169163975144209858469968757e1)

24

Example 6:

> print(~exp(5)*x);
1.48413159102576603421115580040552279623487667593878e2 * x
> print((~exp(5))*x);
1.48413159102576603421115580040552279623487667593878e2 * x
> print(~(exp(5)*x));
exp(5) * x

See also: evaluate (8.45), prec (8.108), error (8.44)

8.9 asciiplot

Name: asciiplot
plots a function in a range using ASCII characters

Usage:

asciiplot(function, range) : (function, range) → void

Parameters:

• function represents a function to be plotted

• range represents a range the function is to be plotted in

Description:

• asciiplot plots the function function in range range using ASCII characters. On systems that
provide the necessary TIOCGWINSZ ioctl, Sollya determines the size of the terminal for the plot
size if connected to a terminal. If it is not connected to a terminal or if the test is not possible,
the plot is of fixed size 77× 25 characters. The function is evaluated on a number of points equal
to the number of columns available. Its value is rounded to the next integer in the range of lines
available. A letter x is written at this place. If zero is in the hull of the image domain of the
function, a x-axis is displayed. If zero is in range, an y-axis is displayed. If the function is constant
or if the range is reduced to one point, the function is evaluated to a constant and the constant is
displayed instead of a plot.

Example 1:

25

> asciiplot(exp(x),[1;2]);
xx

xx
xx

xx
xx

xxx
xx

xxx
xx

xxx
xxx

xxx
xxx

xxx
xxxx

xxx
xxxx

xxxx
xxxx

xxxx
xxxxx

xxxxx
xxxxx

xxx

Example 2:

> asciiplot(expm1(x),[-1;2]);
| x
| x
| x
| x
| xx
| x
| x
| xx
| x
| xx
| xx
| xx
| xx
| xx
| xx
| xxx
| xxx
| xxxx
| xxxx
| xxxx
| xxxxxx

---------------------xxxxxxxx---
xxxxxxxxxxxx |

xxxxxxxxx |

Example 3:

26

> asciiplot(5,[-1;1]);
5

Example 4:

> asciiplot(exp(x),[1;1]);
2.71828182845904523536028747135266249775724709369998

See also: plot (8.101)

8.10 asin

Name: asin
the arcsine function.

Description:

• asin is the inverse of the function sin: asin(y) is the unique number x ∈ [−π/2;π/2] such that
sin(x)=y.

• It is defined only for y ∈ [−1; 1].

See also: sin (8.140)

8.11 asinh

Name: asinh
the arg-hyperbolic sine function.

Description:

• asinh is the inverse of the function sinh: asinh(y) is the unique number x ∈ [−∞; +∞] such that
sinh(x)=y.

• It is defined for every real number y.

See also: sinh (8.141)

8.12 atan

Name: atan
the arctangent function.

Description:

• atan is the inverse of the function tan: atan(y) is the unique number x ∈ [−π/2; +π/2] such that
tan(x)=y.

• It is defined for every real number y.

See also: tan (8.149)

8.13 atanh

Name: atanh
the hyperbolic arctangent function.

Description:

• atanh is the inverse of the function tanh: atanh(y) is the unique number x ∈ [−∞; +∞] such
that tanh(x)=y.

• It is defined only for y ∈ [−1; 1].

See also: tanh (8.150)

27

8.14 autosimplify

Name: autosimplify
activates, deactivates or inspects the value of the automatic simplification state variable

Usage:

autosimplify = activation value : on|off → void
autosimplify = activation value ! : on|off → void

Parameters:

• activation value represents on or off, i.e. activation or deactivation

Description:

• An assignment autosimplify = activation value, where activation value is one of on or off, acti-
vates respectively deactivates the automatic safe simplification of expressions of functions generated
by the evaluation of commands or in argument of other commands.

Sollya commands like remez, taylor or rationalapprox sometimes produce expressions that
can be simplified. Constant subexpressions can be evaluated to dyadic floating-point numbers,
monomials with coefficients 0 can be eliminated. Further, expressions indicated by the user perform
better in many commands when simplified before being passed in argument to a command. When
the automatic simplification of expressions is activated, Sollya automatically performs a safe (not
value changing) simplification process on such expression.

The automatic generation of subexpressions can be annoying, in particular if it takes too much
time for not enough usage. Further the user might want to inspect the structure of the expression
tree returned by a command. In this case, the automatic simplification should be deactivated.

If the assignment autosimplify = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

> autosimplify = on !;
> print(x - x);
0
> autosimplify = off ;
Automatic pure tree simplification has been deactivated.
> print(x - x);
x - x

Example 2:

> autosimplify = on !;
> print(rationalapprox(sin(pi/5.9),7));
0.5
> autosimplify = off !;
> print(rationalapprox(sin(pi/5.9),7));
1 / 2

See also: print (8.111), prec (8.108), points (8.103), diam (8.30), display (8.35), verbosity (8.157),
canonical (8.18), taylorrecursions (8.152), timing (8.153), fullparentheses (8.60), midpointmode
(8.88), hopitalrecursions (8.68), remez (8.125), rationalapprox (8.120), taylor (8.151)

28

8.15 bashexecute

Name: bashexecute
executes a shell command.

Usage:

bashexecute(command) : string → void

Parameters:

• command is a command to be interpreted by the shell.

Description:

• bashexecute(command) lets the shell interpret command. It is useful to execute some external
code within Sollya.

• bashexecute does not return anything. It just executes its argument. However, if command
produces an output in a file, this result can be imported in Sollya with help of commands like
execute, readfile and parse.

Example 1:

> bashexecute("ls /");
bin
boot
cdrom
dev
emul
etc
home
initrd
initrd.img
lib
lib32
lib64
lost+found
media
mnt
opt
proc
root
sbin
srv
sys
tmp
usr
var
vmlinuz

See also: execute (8.46), readfile (8.122), parse (8.98)

8.16 binary

Name: hexadecimal
special value for global state display

Description:

29

• hexadecimal is a special value used for the global state display. If the global state display is
equal to hexadecimal, all data will be output in binary notation.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.26), dyadic (8.40), powers (8.107), hexadecimal (8.66)

8.17 boolean

Name: boolean
keyword representing a boolean type

Usage:

boolean : type type

Description:

• boolean represents the boolean type for declarations of external procedures by means of exter-
nalproc.

Remark that in contrast to other indicators, type indicators like boolean cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.52), constant (8.23), function (8.61), integer (8.73), list of (8.80), range
(8.119), string (8.144)

8.18 canonical

Name: canonical
brings all polynomial subexpressions of an expression to canonical form or activates, deactivates or checks
canonical form printing

Usage:

canonical(function) : function → function
canonical = activation value : on|off → void

canonical = activation value ! : on|off → void

Parameters:

• function represents the expression to be rewritten in canonical form

• activation value represents on or off, i.e. activation or deactivation

Description:

• The command canonical rewrites the expression representing the function function in a way such
that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written
in canonical form, i.e. as a sum of monomials in the canonical base. The canonical base is the
base of the integer powers of the global free variable. The command canonical does not endanger
the safety of computations even in Sollya’s floating-point environment: the function returned is
mathematically equal to the function function.

• An assignment canonical = activation value, where activation value is one of on or off, activates
respectively deactivates the automatic printing of polynomial expressions in canonical form, i.e. as
a sum of monomials in the canonical base. If automatic printing in canonical form is deactivated,
automatic printing yields to displaying polynomial subexpressions in Horner form.

If the assignment canonical = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

30

Example 1:

> print(canonical(1 + x * (x + 3 * x^2)));
1 + x^2 + 3 * x^3
> print(canonical((x + 1)^7));
1 + 7 * x + 21 * x^2 + 35 * x^3 + 35 * x^4 + 21 * x^5 + 7 * x^6 + x^7

Example 2:

> print(canonical(exp((x + 1)^5) - log(asin(((x + 2) + x)^4 * (x + 1)) + x)));
exp(1 + 5 * x + 10 * x^2 + 10 * x^3 + 5 * x^4 + x^5) - log(asin(16 + 80 * x + 16
0 * x^2 + 160 * x^3 + 80 * x^4 + 16 * x^5) + x)

Example 3:

> canonical;
off
> (x + 2)^9;
512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *
(144 + x * (18 + x))))))))
> canonical = on;
Canonical automatic printing output has been activated.
> (x + 2)^9;
512 + 2304 * x + 4608 * x^2 + 5376 * x^3 + 4032 * x^4 + 2016 * x^5 + 672 * x^6 +
144 * x^7 + 18 * x^8 + x^9
> canonical;
on
> canonical = off!;
> (x + 2)^9;
512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *
(144 + x * (18 + x))))))))

See also: horner (8.69), print (8.111)

8.19 ceil

Name: ceil
the usual function ceil.

Description:

• ceil is defined as usual: ceil(x) is the smallest integer y such that y ≥ x.

• It is defined for every real number x.

See also: floor (8.58)

8.20 checkinfnorm

Name: checkinfnorm
checks whether the infinite norm of a function is bounded by a value

Usage:

checkinfnorm(function,range,constant) : (function, range, constant) → boolean

Parameters:

• function represents the function whose infinite norm is to be checked

31

• range represents the infinite norm is to be considered on

• constant represents the upper bound the infinite norm is to be checked to

Description:

• The command checkinfnorm checks whether the infinite norm of the given function function in
the range range can be proven (by Sollya) to be less than the given bound bound. This means, if
checkinfnorm evaluates to true, the infinite norm has been proven (by Sollya’s interval arith-
metic) to be less than the bound. If checkinfnorm evaluates to false, there are two possibilities:
either the bound is less than or equal to the infinite norm of the function or the bound is greater
than the infinite norm but Sollya could not conclude using its internal interval arithmetic.

checkinfnorm is sensitive to the global variable diam. The smaller diam, the more time Sollya
will spend on the evaluation of checkinfnorm in order to prove the bound before returning false
although the infinite is bounded by the bound. If diam is equal to 0, Sollya will eventually spend
infinite time on instances where the given bound bound is less or equal to the infinite norm of the
function function in range range. In contrast, with diam being zero, checkinfnorm evaluates to
true iff the infinite norm of the function in the range is bounded by the given bound.

Example 1:

> checkinfnorm(sin(x),[0;1.75], 1);
true
> checkinfnorm(sin(x),[0;1.75], 1/2); checkinfnorm(sin(x),[0;20/39],
false
> 1/2);
true

Example 2:

> p = remez(exp(x), 5, [-1;1]);
> b = dirtyinfnorm(p - exp(x), [-1;1]);
> checkinfnorm(p - exp(x), [-1;1], b);
false
> b1 = round(b, 15, RU);
> checkinfnorm(p - exp(x), [-1;1], b1);
true
> b2 = round(b, 25, RU);
> checkinfnorm(p - exp(x), [-1;1], b2);
false
> diam = 1b-20!;
> checkinfnorm(p - exp(x), [-1;1], b2);
true

See also: infnorm (8.72), dirtyinfnorm (8.33), accurateinfnorm (8.3), remez (8.125), diam (8.30)

8.21 coeff

Name: coeff
gives the coefficient of degree n of a polynomial

Usage:

coeff(f,n) : (function, integer) → constant

Parameters:

• f is a function (usually a polynomial).

32

• n is an integer

Description:

• If f is a polynomial, coeff(f, n) returns the coefficient of degree n in f.

• If f is a function that is not a polynomial, coeff(f, n) returns 0.

Example 1:

> coeff((1+x)^5,3);
10

Example 2:

> coeff(sin(x),0);
0

See also: degree (8.28)

8.22 concat

Name: @
concatenates two lists or strings.

Usage:

L1@L2 : (list, list) → list
string1@string2 : (string, string) → string

Parameters:

• L1 and L2 are two lists.

• string1 and string2 are two strings.

Description:

• @ concatenates two lists or strings.

Example 1:

> [|1,...,3|]@[|7,8,9|];
[|1, 2, 3, 7, 8, 9|]

Example 2:

> "Hello "@"World!";
Hello World!

See also: .: (8.110), :. (8.7)

8.23 constant

Name: constant
keyword representing a constant type

Usage:

constant : type type

Description:

33

• constant represents the constant type for declarations of external procedures by means of exter-
nalproc.

Remark that in contrast to other indicators, type indicators like constant cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.52), boolean (8.17), function (8.61), integer (8.73), list of (8.80), range
(8.119), string (8.144)

8.24 cos

Name: cos
the cosine function.

Description:

• cos is the usual cosine function.

• It is defined for every real number x.

See also: acos (8.4), sin (8.140), tan (8.149)

8.25 cosh

Name: cosh
the hyperbolic cosine function.

Description:

• cosh is the usual hyperbolic function: cosh(x) = ex+e−x

2 .

• It is defined for every real number x.

See also: acosh (8.5), sinh (8.141), tanh (8.150), exp (8.47)

8.26 decimal

Name: decimal
special value for global state display

Description:

• decimal is a special value used for the global state display. If the global state display is equal
to decimal, all data will be output in decimal notation.

As any value it can be affected to a variable and stored in lists.

See also: dyadic (8.40), powers (8.107), hexadecimal (8.66), binary (8.16)

8.27 default

Name: default
default value for some commands.

Description:

• default is a special value and is replaced by something depending on the context where it is used.
It can often be used as a joker, when you want to specify one of the optional parameters of a
command and not the others: set the value of uninteresting parameters to default.

• Global variables can be reset by affecting them the special value default.

34

Example 1:

> p = remez(exp(x),5,[0;1],default,1e-5);
> q = remez(exp(x),5,[0;1],1,1e-5);
> p==q;
true

Example 2:

> prec;
165
> prec=200;
The precision has been set to 200 bits.
> prec=default;
The precision has been set to 165 bits.

8.28 degree

Name: degree
gives the degree of a polynomial.

Usage:

degree(f) : function → integer

Parameters:

• f is a function (usually a polynomial).

Description:

• If f is a polynomial, degree(f) returns the degree of f.

• Contrary to the usage, Sollya considers that the degree of the null polynomial is 0.

• If f is a function that is not a polynomial, degree(f) returns -1.

Example 1:

> degree((1+x)*(2+5*x^2));
3
> degree(0);
0

Example 2:

> degree(sin(x));
-1

See also: coeff (8.21)

8.29 denominator

Name: denominator
gives the denominator of an expression

Usage:

denominator(expr) : function → function

Parameters:

35

• expr represents an expression

Description:

• If expr represents a fraction expr1 /expr2, denominator(expr) returns the denominator of this
fraction, i.e. expr2.

If expr represents something else, denominator(expr) returns 1.

Note that for all expressions expr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> denominator(5/3);
3

Example 2:

> denominator(exp(x));
1

Example 3:

> a = 5/3;
> b = numerator(a)/denominator(a);
> print(a);
5 / 3
> print(b);
5 / 3

Example 4:

> a = exp(x/3);
> b = numerator(a)/denominator(a);
> print(a);
exp(x / 3)
> print(b);
exp(x / 3)

See also: numerator (8.94)

8.30 diam

Name: diam
parameter used in safe algorithms of Sollya and controlling the maximal length of the involved intervals.

Description:

• diam is a global variable. Its value represents the maximal length allowed for intervals involved
in safe algorithms of Sollya (namely infnorm, checkinfnorm, accurateinfnorm, integral,
findzeros).

• More precisely, diam is relative to the diameter of the input interval of the command. For instance,
suppose that diam=1e-5: if infnorm is called on interval [0, 1], the maximal length of an interval
will be 1e-5. But if it is called on interval [0, 1e−3], the maximal length will be 1e-8.

See also: infnorm (8.72), checkinfnorm (8.20), accurateinfnorm (8.3), integral (8.74), findzeros
(8.55)

36

8.31 diff

Name: diff
differentiation operator

Usage:

diff(function) : function → function

Parameters:

• function represents a function

Description:

• diff(function) returns the symbolic derivative of the function function by the global free variable.

If function represents a function symbol that is externally bound to some code by library, the
derivative is performed as a symbolic annotation to the returned expression tree.

Example 1:

> diff(sin(x));
cos(x)

Example 2:

> diff(x);
1

Example 3:

> diff(x^x);
x^x * (1 + log(x))

See also: library (8.79)

8.32 dirtyfindzeros

Name: dirtyfindzeros
gives a list of numerical values listing the zeros of a function on an interval.

Usage:

dirtyfindzeros(f,I) : (function, range) → list

Parameters:

• f is a function.

• I is an interval.

Description:

• dirtyfindzeros(f,I) returns a list containing some zeros of f in the interval I. The values in the
list are numerical approximation of the exact zeros. The precision of these approximations is
approximately the precision stored in prec. If f does not have two zeros very close to each other,
it can be expected that all zeros are listed. However, some zeros may be forgotten. This command
should be considered as a numerical algorithm and should not be used if safety is critical.

• More precisely, the algorithm relies on global variables prec and points and is the following: let
n be the value of variable points and t be the value of variable prec.

37

– Evaluate |f | at n evenly distributed points in the interval I. the precision used is automatically
chosen in order to ensure that the sign is correct.

– Whenever f changes its sign for two consecutive points, find an approximation x of its zero
with precision t using Newton’s algorithm. The number of steps in Newton’s iteration depends
on t: the precision of the approximation is supposed to be doubled at each step.

– Add this value to the list.

Example 1:

> dirtyfindzeros(sin(x),[-5;5]);
[|-3.14159265358979323846264338327950288419716939937508, 0, 3.141592653589793238
46264338327950288419716939937508|]

Example 2:

> L1=dirtyfindzeros(x^2*sin(1/x),[0;1]);
> points=1000!;
> L2=dirtyfindzeros(x^2*sin(1/x),[0;1]);
> length(L1); length(L2);
18
25

See also: prec (8.108), points (8.103), findzeros (8.55)

8.33 dirtyinfnorm

Name: dirtyinfnorm
computes a numerical approximation of the infinite norm of a function on an interval.

Usage:

dirtyinfnorm(f,I) : (function, range) → constant

Parameters:

• f is a function.

• I is an interval.

Description:

• dirtyinfnorm(f,I) computes an approximation of the infinite norm of the given function f on the
interval I, e.g. maxx∈I{|f(x)|}.

• The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyinfnorm
is NaN.

• The result of this command depends on the global variables prec and points. Therefore, the
returned result is generally a good approximation of the exact infinite norm, with precision prec.
However, the result is generally underestimated and should not be used when safety is critical. Use
infnorm instead.

• The following algorithm is used: let n be the value of variable points and t be the value of variable
prec.

– Evaluate |f | at n evenly distributed points in the interval I. The evaluation are faithful
roundings of the exact results at precision t.

– Whenever the derivative of f changes its sign for two consecutive points, find an approximation
x of its zero with precision t. Then compute a faithful rounding of |f(x)| at precision t.

38

– Return the maximum of all computed values.

Example 1:

> dirtyinfnorm(sin(x),[-10;10]);
1

Example 2:

> prec=15!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.45856
> prec=40!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537135
> prec=100!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136237644438147455024
> prec=200!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136237644438147455023841718299214087993682374094153

Example 3:

> dirtyinfnorm(x^2, [log(0);log(1)]);
@NaN@

See also: prec (8.108), points (8.103), infnorm (8.72), checkinfnorm (8.20)

8.34 dirtyintegral

Name: dirtyintegral
computes a numerical approximation of the integral of a function on an interval.

Usage:

dirtyintegral(f,I) : (function, range) → constant

Parameters:

• f is a function.

• I is an interval.

Description:

• dirtyintegral(f,I) computes an approximation of the integral of f on I.

• The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyintegral
is NaN, even if the integral has a meaning.

• The result of this command depends on the global variables prec and points. The method used
is the trapezium rule applied at n evenly distributed points in the interval, where n is the value of
global variable points.

• This command computes a numerical approximation of the exact value of the integral. It should
not be used if safety is critical. In this case, use command integral instead.

• Warning: this command is known to be currently unsatisfactory. If you really need to compute
integrals, think of using an other tool or report a feature request to sylvain.chevillard@ens-lyon.fr.

39

Example 1:

> sin(10);
-0.54402111088936981340474766185137728168364301291621
> dirtyintegral(cos(x),[0;10]);
-0.54400304905152629822448058882475382036536298356281
> points=2000!;
> dirtyintegral(cos(x),[0;10]);
-0.54401997751158321972222697312583199035995837926892

See also: prec (8.108), points (8.103), integral (8.74)

8.35 display

Name: display
sets or inspects the global variable specifying number notation

Usage:

display = notation value : decimal|binary|dyadic|powers|hexadecimal → void
display = notation value ! : decimal|binary|dyadic|powers|hexadecimal → void

Parameters:

• notation value represents a variable of type decimal|binary|dyadic|powers|hexadecimal

Description:

• An assignment display = notation value, where notation value is one of decimal, dyadic, powers,
binary or hexadecimal, activates the corresponding notation for output of values in print, write
or at the Sollya prompt.

If the global notation variable display is decimal, all numbers will be output in scientific decimal
notation. If the global notation variable display is dyadic, all numbers will be output as dyadic
numbers with Gappa notation. If the global notation variable display is powers, all numbers
will be output as dyadic numbers with a notation compatible with Maple and PARI/GP. If the
global notation variable display is binary, all numbers will be output in binary notation. If the
global notation variable display is hexadecimal, all numbers will be output in C99/ IEEE754R
notation. All output notations can be parsed back by Sollya, inducing no error if the input and
output precisions are the same (see prec).

If the assignment display = notation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

Example 1:

40

> display = decimal;
Display mode is decimal numbers.
> a = evaluate(sin(pi * x), 0.25);
> a;
0.70710678118654752440084436210484903928483593768847
> display = binary;
Display mode is binary numbers.
> a;
1.011010100000100111100110011001111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 2^(-1)
> display = hexadecimal;
Display mode is hexadecimal numbers.
> a;
0xb.504f333f9de6484597d89b3754abe9f1d6f60ba88p-4
> display = dyadic;
Display mode is dyadic numbers.
> a;
33070006991101558613323983488220944360067107133265b-165
> display = powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> a;
33070006991101558613323983488220944360067107133265 * 2^(-165)

See also: print (8.111), write (8.160), decimal (8.26), dyadic (8.40), powers (8.107), binary (8.16),
hexadecimal (8.66), prec (8.108)

8.36 divide

Name: /
division function

Usage:

function1 / function2 : (function, function) → function

Parameters:

• function1 and function2 represent functions

Description:

• / represents the division (function) on reals. The expression function1 / function2 stands for the
function composed of the division function and the two functions function1 and function2, where
function1 is the numerator and function2 the denominator.

Example 1:

> 5 / 2;
2.5

Example 2:

> x / 2;
x * 0.5

Example 3:

> x / x;
1

41

Example 4:

> 3 / 0;
@Inf@

Example 5:

> diff(sin(x) / exp(x));
(exp(x) * cos(x) - sin(x) * exp(x)) / exp(x)^2

See also: + (8.102), − (8.89), ∗ (8.90), ˆ (8.106)

8.37 double

Names: double, D
rounding to the nearest IEEE double.

Description:

• double is both a function and a constant.

• As a function, it rounds its argument to the nearest double precision number. Subnormal numbers
are supported as well as standard numbers: it is the real rounding described in the standard.

• As a constant, it symbolizes the double precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands roundcoefficients and implementpoly. See the
corresponding help pages for examples.

Example 1:

> display=binary!;
> D(0.1);
1.100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> D(4.17);
1.000010101110000101000111101011100001010001111010111_2 * 2^(2)
> D(1.011_2 * 2^(-1073));
1.1_2 * 2^(-1073)

See also: doubleextended (8.39), doubledouble (8.38), tripledouble (8.154), roundcoefficients
(8.132), implementpoly (8.70)

8.38 doubledouble

Names: doubledouble, DD
represents a number as the sum of two IEEE doubles.

Description:

• doubledouble is both a function and a constant.

• As a function, it rounds its argument to the nearest number that can be written as the sum of two
double precision numbers.

• The algorithm used to compute doubledouble(x) is the following: let xh = double(x) and let xl
= double(x-xh). Return the number xh+xl. Note that if the current precision is not sufficient to
represent exactly xh+xl, a rounding will occur and the result of doubledouble(x) will be useless.

• As a constant, it symbolizes the double-double precision format. It is used in contexts when a
precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See
the corresponding help pages for examples.

42

Example 1:

> verbosity=1!;
> a = 1+ 2^(-100);
> DD(a);
Warning: rounding a value computed on less than 106 bits to double-double precis
ion.
1.0000000000000000000000000000007888609052210118054
> prec=50!;
> DD(a);
Warning: rounding a value computed on less than 106 bits to double-double precis
ion.
Warning: double rounding occurred on invoking the double-double rounding operato
r.
Try to increase the working precision.
1

See also: double (8.37), doubleextended (8.39), tripledouble (8.154), roundcoefficients (8.132),
implementpoly (8.70)

8.39 doubleextended

Names: doubleextended, DE
computes the nearest number with 64 bits of mantissa.

Description:

• doubleextended is a function that computes the nearest floating-point number with 64 bits of
mantissa to a given number. Since it is a function, it can be composed with other functions of
Sollya such as exp, sin, etc.

• It does not handle subnormal numbers. The range of possible exponents is the range used for all
numbers represented in Sollya (e.g. basically the range used in the library MPFR).

• Since it is a function and not a command, its behavior is a bit different from the behavior of
round(x,64,RN) even if the result is exactly the same. round(x,64,RN) is immediately evaluated
whereas doubleextended(x) can be composed with other functions (and thus be plotted and so
on).

• Be aware that doubleextended cannot be used as a constant to represent a format in the com-
mands roundcoefficients and implementpoly (contrary to D, DD,and TD).

Example 1:

> display=binary!;
> DE(0.1);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> round(0.1,64,RN);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)

Example 2:

> D(2^(-2000));
0
> DE(2^(-2000));
8.7098098162172166755761954947788722958591037427053e-603

Example 3:

43

> verbosity=1!;
> f = sin(DE(x));
> f(pi);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
-5.0165576126683320235573270803307570138315616702549e-20
> g = sin(round(x,64,RN));
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.

See also: double (8.37), doubledouble (8.38), tripledouble (8.154), round (8.131)

8.40 dyadic

Name: dyadic
special value for global state display

Description:

• dyadic is a special value used for the global state display. If the global state display is equal to
dyadic, all data will be output in dyadic notation with numbers displayed in Gappa format.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.26), powers (8.107), hexadecimal (8.66), binary (8.16)

8.41 equal

Name: ==
equality test operator

Usage:

expr1 == expr2 : (any type, any type) → boolean

Parameters:

• expr1 and expr2 represent expressions

Description:

• The operator == evaluates to true iff its operands expr1 and expr2 are syntactically equal and
different from error or constant expressions that are not constants and that evaluate to the same
floating-point number with the global precision prec. The user should be aware of the fact that
because of floating-point evaluation, the operator == is not exactly the same as the mathematical
equality.

Example 1:

> "Hello" == "Hello";
true
> "Hello" == "Salut";
false
> "Hello" == 5;
false
> 5 + x == 5 + x;
true

Example 2:

44

> 1 == exp(0);
true
> asin(1) * 2 == pi;
true
> exp(5) == log(4);
false

Example 3:

> sin(pi/6) == 1/2 * sqrt(3);
false

Example 4:

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 == 16385.1;
true

Example 5:

> error == error;
false

See also: != (8.91), > (8.63), >= (8.62), <= (8.77), < (8.85), ! (8.93), && (8.6), || (8.97), error (8.44),
prec (8.108)

8.42 erf

Name: erf
the error function.

Description:

• erf is the error function defined by:

erf(x) =
2√
π

∫ x

0

e−t2dt.

• It is defined for every real number x.

See also: erfc (8.43), exp (8.47)

8.43 erfc

Name: erfc
the complementary error function.

Description:

• erfc is the complementary error function defined by erfc(x) = 1− erf(x).

• It is defined for every real number x.

See also: erf (8.42)

45

8.44 error

Name: error
expression representing an input that is wrongly typed or that cannot be executed

Usage:

error : error

Description:

• The variable error represents an input during the evaluation of which a type or execution error
has been detected or is to be detected. Inputs that are syntactically correct but wrongly typed
evaluate to error at some stage. Inputs that are correctly typed but containing commands that
depend on side-effects that cannot be performed or inputs that are wrongly typed at meta-level
(cf. parse), evaluate to error.

Remark that in contrast to all other elements of the Sollya language, error compares neither
equal nor unequal to itself. This provides a means of detecting syntax errors inside the Sollya
language itself without introducing issues of two different wrongly typed input being equal.

Example 1:

> print(5 + "foo");
error

Example 2:

> error;
error

Example 3:

> error == error;
false
> error != error;
false

Example 4:

> correct = 5 + 6;
> incorrect = 5 + "foo";
> (correct == error || correct != error);
true
> (incorrect == error || incorrect != error);
false

See also: void (8.158), parse (8.98)

8.45 evaluate

Name: evaluate
evaluates a function at a constant point or in a range

Usage:

evaluate(function, constant) : (function, constant) → constant | range
evaluate(function, range) : (function, range) → range

evaluate(function, function2) : (function, function) → function

46

Parameters:

• function represents a function

• constant represents a constant point

• range represents a range

• function2 represents a function that is not constant

Description:

• If its second argument is a constant constant, evaluate evaluates its first argument function at
the point indicated by constant. This evaluation is performed in a way that the result is a faithful
rounding of the real value of the function at constant to the current global precision. If such a
faithful rounding is not possible, evaluate returns a range surely encompassing the real value of
the function function at constant. If even interval evaluation is not possible because the expression
is undefined or numerically unstable, NaN will be produced.

• If its second argument is a range range, evaluate evaluates its first argument function by interval
evaluation on this range range. This ensures that the image domain of the function function on
the preimage domain range is surely enclosed in the returned range.

• If its second argument is a function function2 that is not a constant, evaluate replaces all occur-
rences of the free variable in function function by function function2.

Example 1:

> print(evaluate(sin(pi * x), 2.25));
0.70710678118654752440084436210484903928483593768847

Example 2:

> print(evaluate(sin(pi * x), 2));
[-1.72986452514381269516508615031098129542836767991679e-12715;7.5941198201187963
145069564314525661706039084390067e-12716]

Example 3:

> print(evaluate(sin(pi * x), [2, 2.25]));
[-5.143390272677254630046998919961912407349224165421e-50;0.707106781186547524400
84436210484903928483593768866]

Example 4:

> print(evaluate(sin(pi * x), 2 + 0.25 * x));
sin((pi) * (2 + 0.25 * x))

Example 5:

> print(evaluate(sin(pi * 1/x), 0));
[@NaN@;@NaN@]

See also: isevaluable (8.76)

47

8.46 execute

Name: execute
executes the content of a file

Usage:

execute(filename) : string → void

Parameters:

• filename is a string representing a file name

Description:

• execute opens the file indicated by filename, and executes the sequence of commands it contains.
This command is evaluated at execution time: this way you can modify the file filename (for
instance using bashexecute) and execute it just after.

• If filename contains a command execute, it will be executed recursively.

• If filename contains a call to restart, it will be neglected.

• If filename contains a call to quit, the commands following quit in filename will be neglected.

Example 1:

> a=2;
> a;
2
> print("a=1;") > "example.sollya";
> execute("example.sollya");
> a;
1

Example 2:

> verbosity=1!;
> print("a=1; restart; a=2;") > "example.sollya";
> execute("example.sollya");
Warning: a restart command has been used in a file read into another.
This restart command will be neglected.
> a;
2

Example 3:

> verbosity=1!;
> print("a=1; quit; a=2;") > "example.sollya";
> execute("example.sollya");
Warning: the execution of a file read by execute demanded stopping the interpret
ation but it is not stopped.
> a;
1

See also: parse (8.98), readfile (8.122), write (8.160), print (8.111), bashexecute (8.15)

48

8.47 exp

Name: exp
the exponential function.

Description:

• exp is the usual exponential function defined as the solution of the ordinary differential equation
y′ = y with y(0) = 1.

• exp(x) is defined for every real number x.

See also: exp (8.47), log (8.81)

8.48 expand

Name: expand
expands polynomial subexpressions

Usage:

expand(function) : function → function

Parameters:

• function represents a function

Description:

• expand(function) expands all polynomial subexpressions in function function as far as possible.
Factors of sums are multiplied out, power operators with constant positive integer exponents are
replaced by multiplications and divisions are multiplied out, i.e. denomiators are brought at the
most interior point of expressions.

Example 1:

> print(expand(x^3));
x * x * x

Example 2:

> print(expand((x + 2)^3 + 2 * x));
8 + 12 * x + 6 * x * x + x * x * x + 2 * x

Example 3:

> print(expand(exp((x + (x + 3))^5)));
exp(243 + 405 * x + 270 * x * x + 90 * x * x * x + 15 * x * x * x * x + x * x *
x * x * x + x * 405 + 108 * x * 5 * x + 54 * x * x * 5 * x + 12 * x * x * x * 5
* x + x * x * x * x * 5 * x + x * x * 270 + 27 * x * x * x * 10 + 9 * x * x * x
* x * 10 + x * x * x * x * x * 10 + x * x * x * 90 + 6 * x * x * x * x * 10 + x
* x * x * x * x * 10 + x * x * x * x * 5 * x + 15 * x * x * x * x + x * x * x *
x * x)

See also: simplify (8.138), simplifysafe (8.139), horner (8.69)

49

8.49 expm1

Name: expm1
translated exponential function.

Description:

• expm1 is defined by expm1(x) = exp(x)− 1.

• It is defined for every real number x.

See also: exp (8.47)

8.50 exponent

Name: exponent
returns the scaled binary exponent of a number.

Usage:

exponent(x) : constant → integer

Parameters:

• x is a dyadic number.

Description:

• exponent(x) is by definition 0 if x equals 0, NaN, or Inf.

• If x is not zero, it can be uniquely written as x = m · 2e where m is an odd integer and e is an
integer. exponent(x) returns e.

Example 1:

> a=round(Pi,20,RN);
> e=exponent(a);
> e;
-17
> m=mantissa(a);
> a-m*2^e;
0

See also: mantissa (8.86), precision (8.109)

8.51 externalplot

Name: externalplot
plots the error of an external code with regard to a function

Usage:

externalplot(filename, mode, function, range, precision) : (string, absolute|relative, function, range,
integer) → void

externalplot(filename, mode, function, range, precision, perturb) : (string, absolute|relative, function,
range, integer, perturb) → void

externalplot(filename, mode, function, range, precision, plot mode, result filename) : (string,
absolute|relative, function, range, integer, file|postscript|postscriptfile, string) → void

externalplot(filename, mode, function, range, precision, perturb, plot mode, result filename) : (string,
absolute|relative, function, range, integer, perturb, file|postscript|postscriptfile, string) → void

50

Description:

• The command externalplot plots the error of an external function evaluation code sequence
implemented in the object file named filename with regard to the function function. If mode
evaluates to absolute, the difference of both functions is considered as an error function; if mode
evaluates to relative, the difference is divided by the function function. The resulting error function
is plotted on all floating-point numbers with precision significant mantissa bits in the range range.

If the sixth argument of the command externalplot is given an evaluates to perturb, each of
these floating-point numbers is perturbed by a random value that is uniformly distributed in ±1
ulp around the original precision bit floating-point variable.

If a sixth and seventh argument, respectively a seventh and eighth argument in the presence of
perturb as a sixth argument, are given that evaluate to a variable of type file|postscript|postscriptfile
respectively to a character sequence of type string, externalplot will plot (additionally) to a file
in the same way as the command plot does. See plot for details.

The external function evaluation code given in the object file name filename is supposed to define
a function name f as follows (here in C syntax): void f(mpfr t rop, mpfr op). This function
is supposed to evaluate op with an accuracy corresponding to the precision of rop and assign this
value to rop.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: plot (8.101), asciiplot (8.9), perturb (8.99), absolute (8.2), relative (8.124), file (8.54),
postscript (8.104), postscriptfile (8.105), bashexecute (8.15), externalproc (8.52), library (8.79)

8.52 externalproc

Name: externalproc
binds an external code to a Sollya procedure

Usage:

externalproc(identifier, filename, argumenttype − > resulttype) : (identifier type, string, type type,
type type) → void

Parameters:

• identifier represents the identifier the code is to be bound to

• filename of type string represents the name of the object file where the code of procedure can be
found

• argumenttype represents a definition of the types of the arguments of the Sollya procedure and
the external code

• resulttype represents a definition of the result type of the external code

Description:

• externalproc allows for binding the Sollya identifier identifier to an external code. After this
binding, when Sollya encounters identifier applied to a list of actual parameters, it will evaluate
these parameters and call the external code with these parameters. If the external code indicated
success, it will receive the result produced by the external code, transform it to Sollya’s internal
representation and return it.

51

In order to allow correct evaluation and typing of the data in parameter and in result to be passed
to and received from the external code, externalproc has a third parameter argumenttype − >
resulttype. Both argumenttype and resulttype are one of void, constant, function, range, integer,
string, boolean, list of constant, list of function, list of range, list of integer, list of string, list of
boolean.

If upon a usage of a procedure bound to an external procedure the type of the actual parameters
given or its number is not correct, Sollya produces a type error. An external function not applied
to arguments represents itself and prints out with its argument and result types.

The external function is supposed to return an integer indicating success. It returns its result
depending on its Sollya result type as follows. Here, the external procedure is assumed to be
implemented as a C function.

If the Sollya result type is void, the C function has no pointer argument for the result. If the
Sollya result type is constant, the first argument of the C function is of C type mpfr t *, the
result is returned by affecting the MPFR variable. If the Sollya result type is function, the first
argument of the C function is of C type node **, the result is returned by the node * pointed
with a new node *. If the Sollya result type is range, the first argument of the C function is
of C type mpfi t *, the result is returned by affecting the MPFI variable. If the Sollya result
type is integer, the first argument of the C function is of C type int *, the result is returned by
affecting the int variable. If the Sollya result type is string, the first argument of the C function
is of C type char **, the result is returned by the char * pointed with a new char *. If the
Sollya result type is boolean, the first argument of the C function is of C type int *, the result is
returned by affecting the int variable with a boolean value. If the Sollya result type is list of type,
the first argument of the C function is of C type chain **, the result is returned by the chain
* pointed with a new chain *. This chain contains for Sollya type constant pointers mpfr t *
to new MPFR variables, for Sollya type function pointers node * to new nodes, for Sollya type
range pointers mpfi t * to new MPFI variables, for Sollya type integer pointers int * to new
int variables for Sollya type string pointers char * to new char * variables and for Sollya type
boolean pointers int * to new int variables representing boolean values.

The external procedure affects its possible pointer argument if and only if it succeeds. This means, if
the function returns an integer indicating failure, it does not leak any memory to the encompassing
environment.

The external procedure receives its arguments as follows: If the Sollya argument type is void, no
argument array is given. Otherwise the C function receives a C void ** argument representing an
array of size equal to the arity of the function where each entry (of C type void *) represents a
value with a C type depending on the corresponding Sollya type. If the Sollya type is constant,
the C type the void * is to be casted to is mpfr t *. If the Sollya type is function, the C type
the void * is to be casted to is node *. If the Sollya type is range, the C type the void * is
to be casted to is mpfi t *. If the Sollya type is integer, the C type the void * is to be casted
to is int *. If the Sollya type is string, the C type the void * is to be casted to is char *. If
the Sollya type is boolean, the C type the void * is to be casted to is int *. If the Sollya type
is list of type, the C type the void * is to be casted to is chain *. Here depending on type, the
values in the chain are to be casted to mpfr t * for Sollya type constant, node * for Sollya type
function, mpfi t * for Sollya type range, int * for Sollya type integer, char * for Sollya type
string and int * for Sollya type boolean.

The external procedure is not supposed to alter the memory pointed by its array argument void
**.

In both directions (argument and result values), empty lists are represented by chain * NULL
pointers.

In contrast to internal procedures, externally bounded procedures can be considered as objects
inside Sollya that can be assigned to other variables, stored in list etc.

Example 1:

52

> bashexecute("gcc -fPIC -Wall -c externalprocexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocexample externalprocexample.o");

> externalproc(foo, "./externalprocexample", (integer, integer) -> integer);
> foo;
foo(integer, integer) -> integer
> foo(5, 6);
11
> verbosity = 1!;
> foo();
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> a = foo;
> a(5,6);
11

See also: library (8.79), externalplot (8.51), bashexecute (8.15), void (8.158), constant (8.23),
function (8.61), range (8.119), integer (8.73), string (8.144), boolean (8.17), list of (8.80)

8.53 false

Name: false
the boolean value representing the false.

Description:

• false is the usual boolean value.

Example 1:

> true && false;
false
> 2<1;
false

See also: true (8.155), && (8.6), || (8.97)

8.54 file

Name: file
special value for commands plot and externalplot

Description:

• file is a special value used in commands plot and externalplot to save the result of the command
in a data file.

• As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=file;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.51), plot (8.101), postscript (8.104), postscriptfile (8.105)

53

8.55 findzeros

Name: findzeros
gives a list of intervals containing all zeros of a function on an interval.

Usage:

findzeros(f,I) : (function, range) → list

Parameters:

• f is a function.

• I is an interval.

Description:

• findzeros(f,I) returns a list of intervals I1, ... ,In such that, for every zero z of f , there exists
some k such that z ∈ Ik.

• The list may contain intervals Ik that do not contain any zero of f. An interval Ik may contain
many zeros of f.

• This command is meant for cases when safety is critical. If you want to be sure not to forget
any zero, use findzeros. However, if you just want to know numerical values for the zeros of f,
dirtyfindzeros should be quite satisfactory and a lot faster.

• If δ denotes the value of global variable diam, the algorithm ensures that for each k, |Ik| ≤ δ · |I|.

• The algorithm used is basically a bisection algorithm. It is the same algorithm that the one used
for infnorm. See the help page of this command for more details. In short, the behavior of the
algorithm depends on global variables prec, diam, taylorrecursions and hopitalrecursions.

Example 1:

> findzeros(sin(x),[-5;5]);
[|[-3.14208984375;-3.140869140625], [-1.220703125e-3;1.220703125e-3], [3.1408691
40625;3.14208984375]|]
> diam=1e-10!;
> findzeros(sin(x),[-5;5]);
[|[-3.14159265370108187198638916015625;-3.141592652536928653717041015625], [-1.1
6415321826934814453125e-9;1.16415321826934814453125e-9], [3.14159265253692865371
7041015625;3.14159265370108187198638916015625]|]

See also: dirtyfindzeros (8.32), infnorm (8.72), prec (8.108), diam (8.30), taylorrecursions (8.152),
hopitalrecursions (8.68)

8.56 fixed

Name: fixed
indicates that fixed-point formats should be used for fpminimax

Usage:

fixed : fixed|floating

Description:

• The use of fixed in the command fpminimax indicates that the list of formats given as argument
is to be considered as a list of fixed-point formats. See fpminimax for details.

Example 1:

54

> fpminimax(cos(x),6,[|32,32,32,32,32,32,32|],[-1;1],fixed);
0.9999997480772435665130615234375 + x^2 * (-0.4999928693287074565887451171875 +
x^2 * (4.163351492024958133697509765625e-2 + x^2 * (-1.3382239267230033874511718
75e-3)))

See also: fpminimax (8.59), floating (8.57)

8.57 floating

Name: floating
indicates that floating-point formats should be used for fpminimax

Usage:

floating : fixed|floating

Description:

• The use of floating in the command fpminimax indicates that the list of formats given as argu-
ment is to be considered as a list of floating-point formats. See fpminimax for details.

Example 1:

> fpminimax(cos(x),6,[|D...|],[-1;1],floating);
0.99999974816012948686250183527590706944465637207031 + x * (5.521004406122249513
1782035802443168321913900126185e-14 + x * (-0.4999928698019768802396356477402150
630950927734375 + x * (-3.95371609372064761555136192612768146546591008227978e-13
+ x * (4.16335155285858099505347240665287245064973831176758e-2 + x * (5.2492670
395835122748014980938834327670386437070249e-13 + x * (-1.33822408807599468535953
768366653093835338950157166e-3))))))

See also: fpminimax (8.59), fixed (8.56)

8.58 floor

Name: floor
the usual function floor.

Description:

• floor is defined as usual: floor(x) is the greatest integer y such that y ≤ x.

• It is defined for every real number x.

See also: ceil (8.19)

8.59 fpminimax

Name: fpminimax
computes a good polynomial approximation with fixed-point or floating-point coefficients

Usage:

fpminimax(f, n, formats, range, indic1, indic2, indic3, P) : (function, integer, list, range,
absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |

fixed|floating | function, function) → function
fpminimax(f, monomials, formats, range, indic1, indic2, indic3, P) : (function, list, list, range,

absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |
fixed|floating | function, function) → function

55

fpminimax(f, n, formats, L, indic1, indic2, indic3, P) : (function, integer, list, list, absolute|relative |
fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating |

function, function) → function
fpminimax(f, monomials, formats, L, indic1, indic2, indic3, P) : (function, list, list, list,

absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative |
fixed|floating | function, function) → function

Parameters:

• f is the function to be approximated

• n is the degree of the polynomial that must approximate f

• monomials is the list of monomials that must be used to represent the polynomial that approxi-
mates f

• formats is a list indicating the formats that the coefficients of the polynomial must have

• range is the interval where the function must be approximated

• L is a list of interpolation points used by the method

• indic1 (optional) is one of the optional indication parameters. See the detailed description below.

• indic2 (optional) is one of the optional indication parameters. See the detailed description below.

• indic3 (optional) is one of the optional indication parameters. See the detailed description below.

• P (optional) is the minimax polynomial to be considered for solving the problem.

Description:

• fpminimax uses a heuristic (but practically efficient) method to find a good polynomial approxi-
mation of a function f on an interval range. It implements the method published in the article:
Efficient polynomial L∞-approximations
Nicolas Brisebarre and Sylvain Chevillard
Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH 18)
pp. 169-176

• The basic usage of this command is fpminimax(f, n, formats, range). It computes a polynomial
approximation of f with degree at most n on the interval range. formats is a list of integers or
format types (such as double, doubledouble, etc.). The polynomial returned by the command
has its coefficients that fit the formats indications. For instance, if formats[0] is 35, the coefficient
of degree 0 of the polynomial will fit a floating-point format of 35 bits. If formats[1] is D, the
coefficient of degree 1 will be representable by a floating-point number with a precision of 53 bits
(that is not necessarily an IEEE double precision number. See the remark below), etc.

• The second argument may be either an integer or a list of integers interpreted as the list of desired
monomials. For instance, the list [|0, 2, 4, 6|] indicates that the polynomial must be even and of
degree at most 6. Giving an integer n as second argument is equivalent as giving [|0, . . . , n|].
The list of format is interpreted with respect to the list of monomials. For instance, if the list of
monomials is [|0, 2, 4, 6|] and the list of formats is [|161, 107, 53, 24|], the coefficients of degree 0
is searched as a floating-point number with precision 161, the coefficient of degree 2 is searched as
a number of precision 107, and so on.

• The list of formats may contain either integers or format types (double, doubledouble, triple-
double and doubleextended). The list may be too big or even infinite. Only the first indications
will be considered. For instance, for a degree n polynomial, formats[n + 1] and above will be
discarded. This lets one use elliptical indications for the last coefficients.

• The floating-point coefficients considered by fpminimax do not have an exponent range. In
particular, in the format list, double or 53 does not imply that the corresponding coefficient is an
IEEE-754 double.

56

• By default, the list of formats is interpreted as a list of floating-point formats. This may be changed
by passing fixed as an optional argument (see below). Let us take an example: fpminimax(f, 2,
[107, DD, 53], [0;1]). Here the optional argument is missing (we could have set it to floating).
Thus, fpminimax will search for a polynomial of degree 2 with a constant coefficient that is a 107
bits floating-point number, etc.
Currently, doubledouble is just a synonym for 107 and tripledouble a synonym for 161. This
behavior may change in the future (taking into account the fact that some double-doubles are not
representable with 107 bits).
Second example: fpminimax(f, 2, [25, 18, 30], [0;1], fixed). In this case, fpminimax will search
for a polynomial of degree 2 with a constant coefficient of the form m/225 where m is an integer. In
other words, it is a fixed-point number with 25 bits after the point. Note that even with argument
fixed, the formats list is allowed to contain double, doubledouble or tripledouble. In this this
case, it is just a synonym for 53, 107 or 161. This is deprecated and may change in the future.

• The fourth argument may be a range or a list. Lists are for advanced users that know what they
are doing. The core of the method is a kind of approximated interpolation. The list given here is a
list of points that must be considered for the interpolation. It must contain at least as many points
as unknown coefficients. If you give a list, it is also recommended that you provide the minimax
polynomial as last argument. If you give a range, the list of points will be automatically computed.

• The fifth, sixth and seventh arguments are optional. By default, fpminimax will approximate f
optimizing the relative error, and interpreting the list of formats as a list of floating-point formats.
This default behavior may be changed with these optional arguments. You may provide zero, one,
two or three of the arguments and in any order. This lets the user indicate only the non-default
arguments.
The three possible arguments are:

– relative or absolute: the error to be optimized;

– floating or fixed: formats of the coefficients;

– a constrained part q.

The constrained part lets the user assign in advance some of the coefficients. For instance, for
approximating exp(x), it may be interesting to search for a polynomial p of the form

p = 1 + x+
x2

2
+ a3x

3 + a4x
4.

Thus, there is a constrained part q = 1+x+x2/2 and the unknown polynomial should be considered
in the monomial basis [|3, 4|]. Calling fpminimax with monomial basis [|3, 4|] and constrained
part q, will return a polynomial with the right form.

• The last argument is for advanced users. It is the minimax polynomial that approximates the
function f in the monomial basis. If it is not given this polynomial will be automatically computed
by fpminimax.
This minimax polynomial is used to compute the list of interpolation points required by the method.
In general, you do not have to provide this argument. But if you want to obtain several polynomials
of the same degree that approximate the same function on the same range, just changing the
formats, you should probably consider computing only once the minimax polynomial and the list
of points instead of letting fpminimax recompute them each time.
Note that in the case when a constrained part is given, the minimax polynomial must take it into
account. For instance, in the previous example, the minimax would be obtained by the following
command:

P = remez(1-(1+x+x^2/2)/exp(x), [|3,4|], range, 1/exp(x));

Note that the constrained part is not to be added to P .

57

• Note that fpminimax internally computes a minimax polynomial (using the same algorithm as
remez command). Thus fpminimax may encounter the same problems as remez. In particular,
it may be very long when Haar condition is not fulfilled. Another consequence is that currently
fpminimax has to be run with a sufficiently high precision.

Example 1:

> P = fpminimax(cos(x),6,[|DD, DD, D...|],[-1b-5;1b-5]);
> printexpansion(P);
(0x3ff0000000000000 + 0xbc09fda20235c100) + x * ((0x3b29ecd485d34781 + 0xb7c1cbc
971529754) + x * (0xbfdfffffffffff98 + x * (0xbbfa6e0b3183cb0d + x * (0x3fa55555
55145337 + x * (0x3ca3540480618939 + x * 0xbf56c138142d8c3b)))))

Example 2:

> P = fpminimax(sin(x),6,[|32...|],[-1b-5;1b-5], fixed, absolute);
> display = powers!;
> P;
x * (1 + x^2 * (-357913941 * 2^(-31) + x^2 * 35789873 * 2^(-32)))

Example 3:

> P = fpminimax(exp(x), [|3,4|], [|D,24|], [-1/256; 1/246], 1+x+x^2/2);
> display = powers!;
> P;
1 + x * (1 + x * (1 * 2^(-1) + x * (375300225001191 * 2^(-51) + x * 5592621 * 2^
(-27))))

Example 4:

> f = cos(exp(x));
> pstar = remez(f, 5, [-1b-7;1b-7]);
> listpoints = dirtyfindzeros(f-pstar, [-1b-7; 1b-7]);
> P1 = fpminimax(f, 5, [|DD...|], listpoints, absolute, default, default, pstar)
;
> P2 = fpminimax(f, 5, [|D...|], listpoints, absolute, default, default, pstar);

> P3 = fpminimax(f, 5, [|D, D, D, 24...|], listpoints, absolute, default, defaul
t, pstar);
> print("Error of pstar: ", dirtyinfnorm(f-pstar, [-1b-7; 1b-7]));
Error of pstar: 7.9048441305459735102879831325718747183089581485922e-16
> print("Error of P1: ", dirtyinfnorm(f-P1, [-1b-7; 1b-7]));
Error of P1: 7.9048441305459735159848647089192667442047469404883e-16
> print("Error of P2: ", dirtyinfnorm(f-P2, [-1b-7; 1b-7]));
Error of P2: 8.2477144579950871061147021597406077993657714575238e-16
> print("Error of P3: ", dirtyinfnorm(f-P3, [-1b-7; 1b-7]));
Error of P3: 1.08454277156993282593701156841863009789063333951055e-15

See also: remez (8.125), dirtyfindzeros (8.32), absolute (8.2), relative (8.124), fixed (8.56), floating
(8.57), default (8.27)

8.60 fullparentheses

Name: fullparentheses
activates, deactivates or inspects the state variable controlling output with full parenthesising

Usage:

58

fullparentheses = activation value : on|off → void
fullparentheses = activation value ! : on|off → void

Parameters:

• activation value represents on or off, i.e. activation or deactivation

Description:

• An assignment fullparentheses = activation value, where activation value is one of on or off,
activates respectively deactivates the output of expressions with full parenthesising. In full paren-
thesising mode, Sollya commands like print, write and the implicit command when an expression
is given at the prompt will output expressions with parenthesising at all places where it is neces-
sary for expressions containing infix operators to be parsed back with the same result. Otherwise
parentheses around associative operators are omitted.

If the assignment fullparentheses = activation value is followed by an exclamation mark, no
message indicating the new state is displayed. Otherwise the user is informed of the new state of
the global mode by an indication.

Example 1:

> autosimplify = off!;
> fullparentheses = off;
Full parentheses mode has been deactivated.
> print(1 + 2 + 3);
1 + 2 + 3
> fullparentheses = on;
Full parentheses mode has been activated.
> print(1 + 2 + 3);
(1 + 2) + 3

See also: print (8.111), write (8.160), autosimplify (8.14)

8.61 function

Name: function
keyword representing a function type

Usage:

function : type type

Description:

• function represents the function type for declarations of external procedures by means of exter-
nalproc.

Remark that in contrast to other indicators, type indicators like function cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.52), boolean (8.17), constant (8.23), integer (8.73), list of (8.80), range
(8.119), string (8.144)

8.62 ge

Name: >=
greater-than-or-equal-to operator

Usage:

59

expr1 >= expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator >= evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is greater than or equal to a2.
The user should be aware of the fact that because of floating-point evaluation, the operator >= is
not exactly the same as the mathematical operation greater-than-or-equal-to.

Example 1:

> 5 >= 4;
true
> 5 >= 5;
true
> 5 >= 6;
false
> exp(2) >= exp(1);
true
> log(1) >= exp(2);
false

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 >= 16385.1;
true

See also: == (8.41), != (8.91), > (8.63), <= (8.77), < (8.85), ! (8.93), && (8.6), || (8.97), prec (8.108)

8.63 gt

Name: >
greater-than operator

Usage:

expr1 > expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator > evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is greater than a2. The user
should be aware of the fact that because of floating-point evaluation, the operator > is not exactly
the same as the mathematical operation greater-than.

Example 1:

60

> 5 > 4;
true
> 5 > 5;
false
> 5 > 6;
false
> exp(2) > exp(1);
true
> log(1) > exp(2);
false

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16385.1 > 16384.1;
false

See also: == (8.41), != (8.91), >= (8.62), <= (8.77), < (8.85), ! (8.93), && (8.6), || (8.97), prec
(8.108)

8.64 guessdegree

Name: guessdegree
returns the minimal degree needed for a polynomial to approximate a function with a certain error on
an interval.

Usage:

guessdegree(f,I,eps,w) : (function, range, constant, function) → range

Parameters:

• f is the function to be approximated.

• I is the interval where the function must be approximated.

• eps is the maximal acceptable error.

• w (optional) is a weight function. Default is 1.

Description:

• guessdegree tries to find the minimal degree needed to approximate f on I by a polynomial with
an infinite error not greater than eps. More precisely, it finds n minimal such that there exists a
polynomial p of degree n such that ‖pw − f‖∞ < eps.

• guessdegree returns an interval: for common cases, this interval is reduced to a single number
(e.g. the minimal degree). But in certain cases, guessdegree does not succeed in finding the
minimal degree. In such cases the returned interval is of the form [n, p] such that:

– no polynomial of degree n− 1 gives an error less than eps.
– there exists a polynomial of degree p giving an error less than eps.

Example 1:

> guessdegree(exp(x),[-1;1],1e-10);
[10;10]

Example 2:

> guessdegree(1, [-1;1], 1e-8, 1/exp(x));
[8;9]

See also: dirtyinfnorm (8.33), remez (8.125)

61

8.65 head

Name: head
gives the first element of a list.

Usage:

head(L) : list → any type

Parameters:

• L is a list.

Description:

• head(L) returns the first element of the list L. It is equivalent to L[0].

• If L is empty, the command will fail with an error.

Example 1:

> head([|1,2,3|]);
1
> head([|1,2...|]);
1

See also: tail (8.148)

8.66 hexadecimal

Name: hexadecimal
special value for global state display

Description:

• hexadecimal is a special value used for the global state display. If the global state display is
equal to hexadecimal, all data will be output in hexadecimal C99/ IEEE 754R notation.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.26), dyadic (8.40), powers (8.107), binary (8.16)

8.67 honorcoeffprec

Name: honorcoeffprec
indicates the (forced) honoring the precision of the coefficients in implementpoly

Usage:

honorcoeffprec : honorcoeffprec

Description:

• Used with command implementpoly, honorcoeffprec makes implementpoly honor the preci-
sion of the given polynomial. This means if a coefficient needs a double-double or a triple-double
to be exactly stored, implementpoly will allocate appropriate space and use a double-double or
triple-double operation even if the automatic (heuristic) determination implemented in command
implementpoly indicates that the coefficient could be stored on less precision or, respectively,
the operation could be performed with less precision. See implementpoly for details.

Example 1:

62

> verbosity = 1!;
> q = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c");
Warning: at least one of the coefficients of the given polynomial has been round
ed in a way
that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial
is different from the given one.
> printexpansion(q);
0x3ff0000000000000 + x^2 * 0xbfc5555555555555
> r = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c",honorcoeffprec);
Warning: the infered precision of the 2th coefficient of the polynomial is great
er than
the necessary precision computed for this step. This may make the automatic dete
rmination
of precisions useless.
> printexpansion(r);
0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555
55555555)

See also: implementpoly (8.70), printexpansion (8.112)

8.68 hopitalrecursions

Name: hopitalrecursions
controls the number of recursion steps when applying L’Hopital’s rule.

Description:

• hopitalrecursions is a global variable. Its value represents the number of steps of recursion that
are tried when applying L’Hopital’s rule. This rule is applied by the interval evaluator present in
the core of Sollya (and particularly visible in commands like infnorm).

• If an expression of the form f/g has to be evaluated by interval arithmetic on an interval I and if f
and g have a common zero in I, a direct evaluation leads to NaN. Sollya implements a safe heuristic
to avoid this, based on L’Hopital’s rule: in such a case, it can be shown that (f/g)(I) ⊆ (f ′/g′)(I).
Since the same problem may hold for f ′/g′, the rule is applied recursively. The number of step in
this recursion process is controlled by hopitalrecursions.

• Setting hopitalrecursions to 0 makes Sollya use this rule only one time ; setting it to 1 makes
Sollya use the rule two times, and so on. In particular: the rule is always applied at least once, if
necessary.

Example 1:

> hopitalrecursions=0;
The number of recursions for Hopital’s rule has been set to 0.
> evaluate(log(1+x)^2/x^2,[-1/2; 1]);
[-@Inf@;@Inf@]
> hopitalrecursions=1;
The number of recursions for Hopital’s rule has been set to 1.
> evaluate(log(1+x)^2/x^2,[-1/2; 1]);
[-2.52258872223978123766892848583270627230200053744108;6.77258872223978123766892
84858327062723020005374411]

63

8.69 horner

Name: horner
brings all polynomial subexpressions of an expression to Horner form

Usage:

horner(function) : function → function

Parameters:

• function represents the expression to be rewritten in Horner form

Description:

• The command horner rewrites the expression representing the function function in a way such that
all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written in
Horner form. The command horner does not endanger the safety of computations even in Sollya’s
floating-point environment: the function returned is mathematically equal to the function function.

Example 1:

> print(horner(1 + 2 * x + 3 * x^2));
1 + x * (2 + x * 3)
> print(horner((x + 1)^7));
1 + x * (7 + x * (21 + x * (35 + x * (35 + x * (21 + x * (7 + x))))))

Example 2:

> print(horner(exp((x + 1)^5) - log(asin(x + x^3) + x)));
exp(1 + x * (5 + x * (10 + x * (10 + x * (5 + x))))) - log(asin(x * (1 + x^2)) +
x)

See also: canonical (8.18), print (8.111)

8.70 implementpoly

Name: implementpoly
implements a polynomial using double, double-double and triple-double arithmetic and generates a
Gappa proof

Usage:

implementpoly(polynomial, range, error bound, format, functionname, filename) : (function, range,
constant, D|double|DD|doubledouble|TD|tripledouble, string, string) → function

implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient
precisions) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string,

honorcoeffprec) → function
implementpoly(polynomial, range, error bound, format, functionname, filename, proof filename) :
(function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string, string) → function
implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient

precisions, proof filename) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string,
string, honorcoeffprec, string) → function

Description:

• The command implementpoly implements the polynomial polynomial in range range as a function
called functionname in C code using double, double-double and triple-double arithmetic in a way
that the rounding error (estimated at its first order) is bounded by error bound. The produced code
is output in a file named filename. The argument format indicates the double, double-double or

64

triple-double format of the variable in which the polynomial varies, influencing also in the signature
of the C function.

If a seventh or eighth argument proof filename is given and if this argument evaluates to a variable
of type string, the command implementpoly will produce a Gappa proof that the rounding error is
less than the given bound. This proof will be output in Gappa syntax in a file name proof filename.

The command implementpoly returns the polynomial that has been implemented. As the com-
mand implementpoly tries to adapt the precision needed in each evaluation step to its strict
minimum and as it applies renormalization to double-double and triple-double precision coeffi-
cients to bring them to a round-to-nearest expansion form, the polynomial return may differ from
the polynomial polynomial. Nevertheless the difference will be small enough that the rounding
error bound with regard to the polynomial polynomial (estimated at its first order) will be less
than the given error bound.

If a seventh argument honor coefficient precisions is given and evaluates to a variable honorco-
effprec of type honorcoeffprec, implementpoly will honor the precision of the given polynomial
polynomials. This means if a coefficient needs a double-double or a triple-double to be exactly
stored, implementpoly will allocate appropriate space and use a double-double or triple-double
operation even if the automatic (heuristic) determination implemented in command implement-
poly indicates that the coefficient could be stored on less precision or, respectively, the operation
could be performed with less precision. The use of honorcoeffprec has advantages and disad-
vantages. If the polynomial polynomial given has not been determined by a process considering
directly polynomials with floating-point coefficients, honorcoeffprec should not be indicated. The
implementpoly command can then determine the needed precision using the same error estima-
tion as used for the determination of the precisions of the operations. Generally, the coefficients
will get rounded to double, double-double and triple-double precision in a way that minimizes their
number and respects the rounding error bound error bound. Indicating honorcoeffprec may in
this case short-circuit most precision estimations leading to sub-optimal code. On the other hand,
if the polynomial polynomial has been determined with floating-point precisions in mind, honor-
coeffprec should be indicated because such polynomials often are very sensitive in terms of error
propagation with regard to their coefficients’ values. Indicating honorcoeffprec prevents the im-
plementpoly command from rounding the coefficients and altering by many orders of magnitude
approximation error of the polynomial with regard to the function it approximates.

The implementer behind the implementpoly command makes some assumptions on its input
and verifies them. If some assumption cannot be verified, the implementation will not succeed and
implementpoly will evaluate to a variable error of type error. The same behaviour is observed if
some file is not writable or some other side-effect fails, e.g. if the implementer runs out of memory.

As error estimation is performed only on the first order, the code produced by the implementpoly
command should be considered valid iff a Gappa proof has been produced and successfully run in
Gappa.

Example 1:

65

> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c");
1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333
333333333332176851016015461937058717012405395e-3)
> readfile("implementation.c");
#define p_coeff_0h 1.000
000000000000000000000e+00
#define p_coeff_2h -1.6666666666666665741480812812369549646973609924316406250000
0000000000000000000000e-01
#define p_coeff_4h 8.33333333333333321768510160154619370587170124053955078125000
000000000000000000000e-03

void p(double *p_resh, double x) {
double p_x_0_pow2h;

p_x_0_pow2h = x * x;

double p_t_1_0h;
double p_t_2_0h;
double p_t_3_0h;
double p_t_4_0h;
double p_t_5_0h;

p_t_1_0h = p_coeff_4h;
p_t_2_0h = p_t_1_0h * p_x_0_pow2h;
p_t_3_0h = p_coeff_2h + p_t_2_0h;
p_t_4_0h = p_t_3_0h * p_x_0_pow2h;
p_t_5_0h = p_coeff_0h + p_t_4_0h;
*p_resh = p_t_5_0h;

}

Example 2:

> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c","implementation.gappa");
1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333
333333333332176851016015461937058717012405395e-3)

Example 3:

66

> verbosity = 1!;
> q = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c");
Warning: at least one of the coefficients of the given polynomial has been round
ed in a way
that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial
is different from the given one.
> printexpansion(q);
0x3ff0000000000000 + x^2 * 0xbfc5555555555555
> r = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c",honorcoeffprec);
Warning: the infered precision of the 2th coefficient of the polynomial is great
er than
the necessary precision computed for this step. This may make the automatic dete
rmination
of precisions useless.
> printexpansion(r);
0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555
55555555)

Example 4:

> p = 0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x
* (0x3fc5555555555559 + x * (0x3fa55555555555bd + x * (0x3f811111111106e2 + x
* (0x3f56c16c16bf5eb7 + x * (0x3f2a01a01a292dcd + x * (0x3efa01a0218a016a + x
* (0x3ec71de360331aad + x * (0x3e927e42e3823bf3 + x * (0x3e5ae6b2710c2c9a + x
* (0x3e2203730c0a7c1d + x * 0x3de5da557e0781df))))))))))));
> q = implementpoly(p,[-1/2;1/2],1b-60,D,"p","implementation.c",honorcoeffprec,"
implementation.gappa");
> if (q != p) then print("During implementation, rounding has happened.") else p
rint("Polynomial implemented as given.");
Polynomial implemented as given.

See also: honorcoeffprec (8.67), roundcoefficients (8.132), double (8.37), doubledouble (8.38),
tripledouble (8.154), readfile (8.122), printexpansion (8.112), error (8.44)

8.71 inf

Name: inf
gives the lower bound of an interval.

Usage:

inf(I) : range → constant
inf(x) : constant → constant

Parameters:

• I is an interval.

• x is a real number.

Description:

• Returns the lower bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

67

• When called on a real number x, inf considers it as an interval formed of a single point: [x, x]. In
other words, inf behaves like the identity.

Example 1:

> inf([1;3]);
1
> inf(0);
0

Example 2:

> display=binary!;
> I=[0.111110000011111_2; 1];
> inf(I);
1.11110000011111_2 * 2^(-1)
> prec=12!;
> inf(I);
1.11110000011111_2 * 2^(-1)

See also: mid (8.87), sup (8.147)

8.72 infnorm

Name: infnorm
computes an interval bounding the infinite norm of a function on an interval.

Usage:

infnorm(f,I,filename,Ilist) : (function, range, string, list) → range

Parameters:

• f is a function.

• I is an interval.

• filename (optional) is the name of the file into a proof will be saved.

• IList (optional) is a list of intervals to be excluded.

Description:

• infnorm(f,range) computes an interval bounding the infinite norm of the given function f on the
interval I, e.g. computes an interval J such that maxx∈I{|f(x)|} ⊆ J .

• If filename is given, a proof in English will be produced (and stored in file called filename) proving
that maxx∈I{|f(x)|} ⊆ J .

• If a list IList of intervals I1, ... ,In is given, the infinite norm will be computed on I (I1 ∪ . . .∪ In).

• The function f is assumed to be at least twice continuous on I. More generally, if f is Ck, global
variables hopitalrecursions and taylorrecursions must have values not greater than k.

• If the interval is reduced to a single point, the result of infnorm is an interval containing the exact
absolute value of f at this point.

• If the interval is not bound, the result will be [0, +∞] which is true but perfectly useless. infnorm
is not meant to be used with infinite intervals.

• The result of this command depends on the global variables prec, diam, taylorrecursions and
hopitalrecursions. The contribution of each variable is not easy even to analyse.

68

– The algorithm uses interval arithmetic with precision prec. The precision should thus be set
big enough to ensure that no critical cancellation will occur.

– When an evaluation is performed on an interval [a, b], if the result is considered being too
large, the interval is split into [a, a+b

2] and [a+b
2 , b] and so on recursively. This recursion step

is not performed if the (b− a) < δ · |I| where δ is the value of variable diam. In other words,
diam controls the minimum length of an interval during the algorithm.

– To perform the evaluation of a function on an interval, Taylor’s rule is applied, e.g. f([a, b]) ⊆
f(m) + [a − m, b − m] · f ′([a, b]) where m = a+b

2 . This rule is applied recursively n times
where n is the value of variable taylorrecursions. Roughly speaking, the evaluations will
avoid decorrelation up to order n.

– When a function of the form g
h has to be evaluated on an interval [a, b] and when g and

h vanish at a same point z of the interval, the ratio may be defined even if the expression
g(z)
h(z) = 0

0 does not make any sense. In this case, L’Hopital’s rule may be used and
(

g
h

)
([a, b]) ⊆(

g′

h′

)
([a, b]). Since the same can occur with the ratio g′

h′ , the rule is applied recursively.
Variable hopitalrecursions controls the number of recursion steps.

• The algorithm used for this command is quite complex to be explained here. Please find a complete
description in the following article:
S. Chevillard and C. Lauter
A certified infinite norm for the implementation of elementary functions
LIP Research Report number RR2007-26
http://prunel.ccsd.cnrs.fr/ensl-00119810

Example 1:

> infnorm(exp(x),[-2;3]);
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]

Example 2:

> infnorm(exp(x),[-2;3],"proof.txt");
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]

Example 3:

> infnorm(exp(x),[-2;3],[| [0;1], [2;2.5] |]);
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]

Example 4:

> infnorm(exp(x),[-2;3],"proof.txt", [| [0;1], [2;2.5] |]);
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]

Example 5:

> infnorm(exp(x),[1;1]);
[2.71828182845904523536028747135266249775724709369989;2.718281828459045235360287
47135266249775724709369998]

Example 6:

> infnorm(exp(x), [log(0);log(1)]);
[0;@Inf@]

See also: prec (8.108), diam (8.30), hopitalrecursions (8.68), dirtyinfnorm (8.33), checkinfnorm
(8.20)

69

8.73 integer

Name: integer
keyword representing a machine integer type

Usage:

integer : type type

Description:

• integer represents the machine integer type for declarations of external procedures by means of
externalproc.

Remark that in contrast to other indicators, type indicators like integer cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.52), boolean (8.17), constant (8.23), function (8.61), list of (8.80), range
(8.119), string (8.144)

8.74 integral

Name: integral
computes an interval bounding the integral of a function on an interval.

Usage:

integral(f,I) : (function, range) → range

Parameters:

• f is a function.

• I is an interval.

Description:

• integral(f,I) returns an interval J such that the exact value of the integral of f on I lies in J .

• This command is safe but very inefficient. Use dirtyintegral if you just want an approximate
value.

• The result of this command depends on the global variable diam. The method used is the following:
I is cut into intervals of length not greater then δ · |I| where δ is the value of global variable diam.
On each small interval J, an evaluation of f by interval is performed. The result is multiplied by
the length of J. Finally all values are summed.

Example 1:

> sin(10);
-0.54402111088936981340474766185137728168364301291621
> integral(cos(x),[0;10]);
[-0.54710197983579690224097637163525943075698599257332;-0.5409401513001318384815
0540881373370744053741191728]
> diam=1e-5!;
> integral(cos(x),[0;10]);
[-0.54432915685955427101857780295936956775293876382777;-0.5437130640124996950803
9644221927489010425803173555]

See also: points (8.103), dirtyintegral (8.34)

70

8.75 isbound

Name: isbound
indicates whether a variable is bound or not.

Usage:

isbound(ident) : boolean

Parameters:

• ident is a name.

Description:

• isbound(ident) returns a boolean value indicating whether the name ident is used or not to
represent a variable. It returns true when ident is the name used to represent the global variable
or if the name is currently used to refer to a (possibly local) variable.

• When a variable is defined in a block and has not been defined outside, isbound returns true when
called inside the block, and false outside. Note that isbound returns true as soon as a variable
has been declared with var, even if no value is actually stored in it.

• If ident1 is bound to a variable and if ident2 refers to the global variable, the command re-
name(ident2, ident1) hides the value of ident1 which becomes the global variable. However, if the
global variable is again renamed, ident1 gets its value back. In this case, isbound(ident1) returns
true. If ident1 was not bound before, isbound(ident1) returns false after that ident1 has been
renamed.

Example 1:

> isbound(x);
false
> isbound(f);
false
> isbound(g);
false
> f=sin(x);
> isbound(x);
true
> isbound(f);
true
> isbound(g);
false

Example 2:

> isbound(a);
false
> { var a; isbound(a); };
true
> isbound(a);
false

Example 3:

> f=sin(x);
> isbound(x);
true
> rename(x,y);
> isbound(x);
false

71

Example 4:

> x=1;
> f=sin(y);
> rename(y,x);
> f;
sin(x)
> x;
x
> isbound(x);
true
> rename(x,y);
> isbound(x);
true
> x;
1

See also: rename (8.126)

8.76 isevaluable

Name: isevaluable
tests whether a function can be evaluated at a point

Usage:

isevaluable(function, constant) : (function, constant) → boolean

Parameters:

• function represents a function

• constant represents a constant point

Description:

• isevaluable applied to function function and a constant constant returns a boolean indicating
whether or not a subsequent call to evaluate on the same function function and constant constant
will produce a numerical result or NaN. I.e. isevaluable returns false iff evaluate will return
NaN.

Example 1:

> isevaluable(sin(pi * 1/x), 0.75);
true
> print(evaluate(sin(pi * 1/x), 0.75));
-0.86602540378443864676372317075293618347140262690518

Example 2:

> isevaluable(sin(pi * 1/x), 0.5);
true
> print(evaluate(sin(pi * 1/x), 0.5));
[-1.72986452514381269516508615031098129542836767991679e-12715;7.5941198201187963
145069564314525661706039084390067e-12716]

Example 3:

> isevaluable(sin(pi * 1/x), 0);
false
> print(evaluate(sin(pi * 1/x), 0));
[@NaN@;@NaN@]

See also: evaluate (8.45)

72

8.77 le

Name: <=
less-than-or-equal-to operator

Usage:

expr1 <= expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator <= evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is less than or equal to a2. The
user should be aware of the fact that because of floating-point evaluation, the operator <= is not
exactly the same as the mathematical operation less-than-or-equal-to.

Example 1:

> 5 <= 4;
false
> 5 <= 5;
true
> 5 <= 6;
true
> exp(2) <= exp(1);
false
> log(1) <= exp(2);
true

Example 2:

> prec = 12;
The precision has been set to 12 bits.
> 16385.1 <= 16384.1;
true

See also: == (8.41), != (8.91), >= (8.62), > (8.63), < (8.85), ! (8.93), && (8.6), || (8.97), prec (8.108)

8.78 length

Name: length
computes the length of a list or string.

Usage:

length(L) : list → integer
length(s) : string → integer

Parameters:

• L is a list.

• s is a string.

Description:

• length returns the length of a list or a string, e.g. the number of elements or letters.

73

• The empty list or string have length 0. If L is an end-elliptic list, length returns +Inf.

Example 1:

> length("Hello World!");
12

Example 2:

> length([|1,...,5|]);
5

Example 3:

> length([||]);
1

Example 4:

> length([|1,2...|]);
@Inf@

8.79 library

Name: library
binds an external mathematical function to a variable in Sollya

Usage:

library(path) : string → function

Description:

• The command library lets you extends the set of mathematical functions known by Sollya. By
default, Sollya knows the most common mathematical functions such as exp, sin, erf, etc. Within
Sollya, these functions may be composed. This way, Sollya should satisfy the needs of a lot of
users. However, for particular applications, one may want to manipulates other functions such as
Bessel functions, or functions defined by an integral or even a particular solution of an ODE.

• library makes it possible to let Sollya know about new functions. In order to let it know, you
have to provide an implementation of the function you are interested with. This implementation
is a C file containing a function of the form:

int my_ident(mpfi_t result, mpfi_t op, int n)

The semantic of this function is the following: it is an implementation of the function and its
derivatives in interval arithmetic. my_ident(result, I, n) shall store in result an enclosure of
the image set of the n-th derivative of the function f over I: f (n)(I) ⊆ result.

• The integer returned value has no meaning currently.

• You must not provide a non trivial implementation for any n. Most functions of Sollya needs
a relevant implementation of f , f ′ and f ′′. For higher derivatives, its is not so critical and the
implementation may just store [−∞, +∞] in result whenever n > 2.

• Note that you should respect somehow MPFI standards in your implementation: result has its
own precision and you should perform the intermediate computations so that result is as tighter
as possible.

• You can include sollya.h in your implementation and use library functionnalities of Sollya for your
implementation.

74

• To bind your function into Sollya, you must use the same identifier as the function name used in
your implementation file (my_ident in the previous example).

Example 1:

> bashexecute("gcc -fPIC -Wall -c libraryexample.c");
> bashexecute("gcc -shared -o libraryexample libraryexample.o -lgmp -lmpfr");
> myownlog = library("./libraryexample");
> evaluate(log(x), 2);
0.69314718055994530941723212145817656807550013436024
> evaluate(myownlog(x), 2);
0.69314718055994530941723212145817656807550013436024

See also: bashexecute (8.15), externalproc (8.52), externalplot (8.51)

8.80 listof

Name: list of
keyword used in combination with a type keyword

Description:

• list of is used in combination with one of the following keywords for indicating lists of the respective
type in declarations of external procedures using externalproc: boolean, constant, function,
integer, range and string.

See also: externalproc (8.52), boolean (8.17), constant (8.23), function (8.61), integer (8.73),
range (8.119), string (8.144)

8.81 log

Name: log
natural logarithm.

Description:

• log is the natural logarithm defined as the inverse of the exponential function: log(y) is the unique
real number x such that exp(x) = y.

• It is defined only for y ∈ [0; +∞].

See also: exp (8.47), log2 (8.84), log10 (8.82)

8.82 log10

Name: log10
decimal logarithm.

Description:

• log10 is the decimal logarithm defined by: log10(x) = log(x)/ log(10).

• It is defined only for x ∈ [0; +∞].

See also: log (8.81), log2 (8.84)

75

8.83 log1p

Name: log1p
translated logarithm.

Description:

• log1p is the function defined by log1p(x) = log(1 + x).

• It is defined only for x ∈ [−1; +∞].

See also: log (8.81)

8.84 log2

Name: log2
binary logarithm.

Description:

• log2 is the binary logarithm defined by: log2(x) = log(x)/ log(2).

• It is defined only for x ∈ [0; +∞].

See also: log (8.81), log10 (8.82)

8.85 lt

Name: <
less-than operator

Usage:

expr1 < expr2 : (constant, constant) → boolean

Parameters:

• expr1 and expr2 represent constant expressions

Description:

• The operator < evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point
numbers a1 respectively a2 with the global precision prec and a1 is less than a2. The user should
be aware of the fact that because of floating-point evaluation, the operator < is not exactly the
same as the mathematical operation less-than.

Example 1:

> 5 < 4;
false
> 5 < 5;
false
> 5 < 6;
true
> exp(2) < exp(1);
false
> log(1) < exp(2);
true

Example 2:

76

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 < 16385.1;
false

See also: == (8.41), != (8.91), >= (8.62), > (8.63), <= (8.77), ! (8.93), && (8.6), || (8.97), prec
(8.108)

8.86 mantissa

Name: mantissa
returns the integer mantissa of a number.

Usage:

mantissa(x) : constant → integer

Parameters:

• x is a dyadic number.

Description:

• mantissa(x) is by definition x if x equals 0, NaN, or Inf.

• If x is not zero, it can be uniquely written as x = m · 2e where m is an odd integer and e is an
integer. mantissa(x) returns m.

Example 1:

> a=round(Pi,20,RN);
> e=exponent(a);
> m=mantissa(a);
> m;
411775
> a-m*2^e;
0

See also: exponent (8.50), precision (8.109)

8.87 mid

Name: mid
gives the middle of an interval.

Usage:

mid(I) : range → constant
mid(x) : constant → constant

Parameters:

• I is an interval.

• x is a real number.

Description:

• Returns the middle of the interval I. If the middle is not exactly representable at the current
precision, the value is returned as an unevaluated expression.

77

• When called on a real number x, mid considers it as an interval formed of a single point: [x, x].
In other words, mid behaves like the identity.

Example 1:

> mid([1;3]);
2
> mid(17);
17

See also: inf (8.71), sup (8.147)

8.88 midpointmode

Name: midpointmode
global variable controlling the way intervals are displayed.

Description:

• midpointmode is a global variable. When its value is off, intervals are displayed as usual (with
the form [a;b]). When its value is on, and if a and b have the same first significant digits, the
interval in displayed in a way that lets one immediately see the common digits of the two bounds.

• This mode is supported only with display set to decimal. In other modes of display, midpoint-
mode value is simply ignored.

Example 1:

> a = round(Pi,30,RD);
> b = round(Pi,30,RU);
> d = [a,b];
> d;
[3.1415926516056060791015625;3.1415926553308963775634765625]
> midpointmode=on!;
> d;
0.314159265~1/6~e1

See also: on (8.96), off (8.95), roundingwarnings (8.134)

8.89 minus

Name: −
subtraction function

Usage:

function1 − function2 : (function, function) → function

Parameters:

• function1 and function2 represent functions

Description:

• − represents the subtraction (function) on reals. The expression function1 − function2 stands for
the function composed of the subtraction function and the two functions function1 and function2,
where function1 is the subtrahend and function2 the subtractor.

Example 1:

78

> 5 - 2;
3

Example 2:

> x - 2;
-2 + x

Example 3:

> x - x;
0

Example 4:

> diff(sin(x) - exp(x));
cos(x) - exp(x)

See also: + (8.102), ∗ (8.90), / (8.36), ˆ (8.106)

8.90 mult

Name: ∗
multiplication function

Usage:

function1 ∗ function2 : (function, function) → function

Parameters:

• function1 and function2 represent functions

Description:

• ∗ represents the multiplication (function) on reals. The expression function1 ∗ function2 stands
for the function composed of the multiplication function and the two functions function1 and
function2.

Example 1:

> 5 * 2;
10

Example 2:

> x * 2;
x * 2

Example 3:

> x * x;
x^2

Example 4:

> diff(sin(x) * exp(x));
sin(x) * exp(x) + exp(x) * cos(x)

See also: + (8.102), − (8.89), / (8.36), ˆ (8.106)

79

8.91 neq

Name: !=
negated equality test operator

Usage:

expr1 != expr2 : (any type, any type) → boolean

Parameters:

• expr1 and expr2 represent expressions

Description:

• The operator != evaluates to true iff its operands expr1 and expr2 are syntactically unequal and
both different from error or constant expressions that are not constants and that evaluate to two
different floating-point number with the global precision prec. The user should be aware of the fact
that because of floating-point evaluation, the operator != is not exactly the same as the negation
of the mathematical equality.

Note that the expressions !(expr1 != expr2) and expr1 == expr2 do not evaluate to the same
boolean value. See error for details.

Example 1:

> "Hello" != "Hello";
false
> "Hello" != "Salut";
true
> "Hello" != 5;
true
> 5 + x != 5 + x;
false

Example 2:

> 1 != exp(0);
false
> asin(1) * 2 != pi;
false
> exp(5) != log(4);
true

Example 3:

> sin(pi/6) != 1/2 * sqrt(3);
true

Example 4:

> prec = 12;
The precision has been set to 12 bits.
> 16384.1 != 16385.1;
false

Example 5:

> error != error;
false

See also: == (8.41), > (8.63), >= (8.62), <= (8.77), < (8.85), ! (8.93), && (8.6), || (8.97), error (8.44),
prec (8.108)

80

8.92 nop

Name: nop
no operation

Usage:

nop : void → void

Description:

• The command nop does nothing. This means it is an explicit parse element in the Sollya language
that finally does not produce any result or side-effect.

• The keyword nop is implicit in some procedure definitions. Procedures without imperative body
get parsed as if they had an imperative body containing one nop statement.

Example 1:

> nop;

Example 2:

> succ = proc(n) { return n + 1; };
> succ;
proc(n)
begin
nop;
return (n) + (1);
end
> succ(5);
6

See also: proc (8.116)

8.93 not

Name: !
boolean NOT operator

Usage:

! expr : boolean → boolean

Parameters:

• expr represents a boolean expression

Description:

• ! evaluates to the boolean NOT of the boolean expression expr. ! expr evaluates to true iff expr
does not evaluate to true.

Example 1:

> ! false;
true

Example 2:

> ! (1 == exp(0));
false

See also: && (8.6), || (8.97)

81

8.94 numerator

Name: numerator
gives the numerator of an expression

Usage:

numerator(expr) : function → function

Parameters:

• expr represents an expression

Description:

• If expr represents a fraction expr1 /expr2, numerator(expr) returns the numerator of this fraction,
i.e. expr1.

If expr represents something else, numerator(expr) returns the expression itself, i.e. expr.

Note that for all expressions expr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> numerator(5/3);
5

Example 2:

> numerator(exp(x));
exp(x)

Example 3:

> a = 5/3;
> b = numerator(a)/denominator(a);
> print(a);
5 / 3
> print(b);
5 / 3

Example 4:

> a = exp(x/3);
> b = numerator(a)/denominator(a);
> print(a);
exp(x / 3)
> print(b);
exp(x / 3)

See also: denominator (8.29)

8.95 off

Name: off
special value for certain global variables.

Description:

• off is a special value used to deactivate certain functionnalities of Sollya (namely canonical,
timing, fullparentheses, midpointmode).

82

• As any value it can be affected to a variable and stored in lists.

Example 1:

> canonical=on;
Canonical automatic printing output has been activated.
> p=1+x+x^2;
> mode=off;
> p;
1 + x + x^2
> canonical=mode;
Canonical automatic printing output has been deactivated.
> p;
1 + x * (1 + x)

See also: on (8.96), canonical (8.18), timing (8.153), fullparentheses (8.60), midpointmode (8.88)

8.96 on

Name: on
special value for certain global variables.

Description:

• on is a special value used to activate certain functionnalities of Sollya (namely canonical, timing,
fullparentheses, midpointmode).

• As any value it can be affected to a variable and stored in lists.

Example 1:

> p=1+x+x^2;
> mode=on;
> p;
1 + x * (1 + x)
> canonical=mode;
Canonical automatic printing output has been activated.
> p;
1 + x + x^2

See also: off (8.95), canonical (8.18), timing (8.153), fullparentheses (8.60), midpointmode (8.88)

8.97 or

Name: ||
boolean OR operator

Usage:

expr1 || expr2 : (boolean, boolean) → boolean

Parameters:

• expr1 and expr2 represent boolean expressions

Description:

• || evaluates to the boolean OR of the two boolean expressions expr1 and expr2. || evaluates to true
iff at least one of expr1 or expr2 evaluate to true.

83

Example 1:

> false || false;
false

Example 2:

> (1 == exp(0)) || (0 == log(1));
true

See also: && (8.6), ! (8.93)

8.98 parse

Name: parse
parses an expression contained in a string

Usage:

parse(string) : string → function | error

Parameters:

• string represents a character sequence

Description:

• parse(string) parses the character sequence string containing an expression built on constants and
base functions.

If the character sequence does not contain a well-defined expression, a warning is displayed indi-
cating a syntax error and parse returns a error of type error.

Example 1:

> parse("exp(x)");
exp(x)

Example 2:

> verbosity = 1!;
> parse("5 + * 3");
Warning: syntax error, unexpected MULTOKEN. Will try to continue parsing (expect
ing ";"). May leak memory.
Warning: the string "5 + * 3" could not be parsed by the miniparser.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

See also: execute (8.46), readfile (8.122)

8.99 perturb

Name: perturb
indicates random perturbation of sampling points for externalplot

Usage:

perturb : perturb

84

Description:

• The use of perturb in the command externalplot enables the addition of some random noise
around each sampling point in externalplot.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.51), absolute (8.2), relative (8.124), bashexecute (8.15)

8.100 pi

Name: pi
the constant π.

Description:

• pi is the constant π, defined as half the period of sine and cosine.

• In Sollya, pi is considered as a 0-ary function. This way, the constant is not evaluated at the
time of its definition but at the time of its use. For instance, when you define a constant or a
function relating to π, the current precision at the time of the definition does not matter. What is
important is the current precision when you evaluate the function or the constant value.

• Remark that when you define an interval, the bounds are first evaluated and then the interval is
defined. In this case, pi will be evaluated as any other constant value at the definition time of the
interval, thus using the current precision at this time.

Example 1:

> verbosity=1!; prec=12!;
> a = 2*pi;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
6.283
> prec=20!;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
6.283187

Example 2:

> prec=12!;
> d = [pi; 5];
> d;
[3.1406;5]
> prec=20!;
> d;
[3.140625;5]

See also: cos (8.24), sin (8.140)

85

8.101 plot

Name: plot
plots one or several functions

Usage:

plot(f1, ... ,fn, I) : (function, ... ,function, range) → void
plot(f1, ... ,fn, I, file, name) : (function, ... ,function, range, file, string) → void

plot(f1, ... ,fn, I, postscript, name) : (function, ... ,function, range, postscript, string) → void
plot(f1, ... ,fn, I, postscriptfile, name) : (function, ... ,function, range, postscriptfile, string) → void

plot(L, I) : (list, range) → void
plot(L, I, file, name) : (list, range, file, string) → void

plot(L, I, postscript, name) : (list, range, postscript, string) → void
plot(L, I, postscriptfile, name) : (list, range, postscriptfile, string) → void

Parameters:

• f1, ..., fn are functions to be plotted.

• L is a list of functions to be plotted.

• I is the interval where the functions have to be plotted.

• name is a string representing the name of a file.

Description:

• This command plots one or several functions f1, ... ,fn on an interval I. Functions can be either
given as parameters of plot or as a list L which elements are functions. Functions are plotted on
the same graphic with different colors.

• If L contains an element that is not a function (or a constant), an error occurs.

• plot relies on the value of global variable points. Let n be the value of this variable. The algorithm
is the following: each function is evaluated at n evenly distributed points in I. At each point, the
computed value is a faithful rounding of the exact value with a sufficiently big precision. Each
point is finally plotted. This avoid numerical artefacts such as critical cancellations.

• You can save the graphic either as a data file or as a postscript file.

• If you use argument file with a string name, Sollya will save a data file called name.dat and
a gnuplot directives file called name.p. Invoking gnuplot on name.p will plots datas stored in
name.dat.

• If you use argument postscript with a string name, Sollya will save a postscript file called
name.eps representing your graphic.

• If you use argument postscriptfile with a string name, Sollya will produce the corresponding
name.dat, name.p and name.eps.

• This command uses gnuplot to produce the final graphic. If your terminal is not graphic (typically
if you use Sollya by ssh without -X) gnuplot should be able to detect it and produce an ASCII-art
version on the standard output. If it is not the case, you can either store the graphic in a postscript
file to view it locally, or use asciiplot command.

• If every function is constant, plot will not plot them but just display their value.

• If the interval is reduced to a single point, plot will just display the value of the functions at this
point.

Example 1:

86

> plot(sin(x),0,cos(x),[-Pi,Pi]);

Example 2:

> plot(sin(x),0,cos(x),[-Pi,Pi],postscriptfile,"plotSinCos");

Example 3:

> plot(exp(0), sin(1), [0;1]);
1
0.84147098480789650665250232163029899962256306079837

Example 4:

> plot(sin(x), cos(x), [1;1]);
0.84147098480789650665250232163029899962256306079837
0.54030230586813971740093660744297660373231042061792

See also: externalplot (8.51), asciiplot (8.9), file (8.54), postscript (8.104), postscriptfile (8.105),
points (8.103)

8.102 plus

Name: +
addition function

Usage:

function1 + function2 : (function, function) → function

Parameters:

• function1 and function2 represent functions

Description:

• + represents the addition (function) on reals. The expression function1 + function2 stands for the
function composed of the addition function and the two functions function1 and function2.

Example 1:

> 1 + 2;
3

Example 2:

> x + 2;
2 + x

Example 3:

> x + x;
x * 2

Example 4:

> diff(sin(x) + exp(x));
cos(x) + exp(x)

See also: − (8.89), ∗ (8.90), / (8.36), ˆ (8.106)

87

8.103 points

Name: points
controls the number of points chosen by Sollya in certain commands.

Description:

• points is a global variable. Its value represents the number of points used in numerical algorithms
of Sollya (namely dirtyinfnorm, dirtyintegral, dirtyfindzeros, plot).

Example 1:

> f=x^2*sin(1/x);
> points=10;
The number of points has been set to 10.
> dirtyfindzeros(f, [0;1]);
[|0, 0.318309886183790671537767526745028724068919291480918|]
> points=100;
The number of points has been set to 100.
> dirtyfindzeros(f, [0;1]);
[|0, 2.4485375860291590118289809749617594159147637806224e-2, 3.53677651315322968
37529725193892080452102143497879e-2, 4.54728408833986673625382181064326748669884
702115589e-2, 5.3051647697298445256294587790838120678153215246819e-2, 6.36619772
36758134307553505349005744813783858296183e-2, 7.74999999999999999999999999999999
99999999999999134e-2, 0.106103295394596890512589175581676241356306430493638, 0.1
59154943091895335768883763372514362034459645740459, 0.31830988618379067153776752
6745028724068919291480918|]

See also: dirtyinfnorm (8.33), dirtyintegral (8.34), dirtyfindzeros (8.32), plot (8.101)

8.104 postscript

Name: postscript
special value for commands plot and externalplot

Description:

• postscript is a special value used in commands plot and externalplot to save the result of the
command in a postscript file.

• As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscript;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.51), plot (8.101), file (8.54), postscriptfile (8.105)

8.105 postscriptfile

Name: postscriptfile
special value for commands plot and externalplot

Description:

• postscriptfile is a special value used in commands plot and externalplot to save the result of
the command in a data file and a postscript file.

88

• As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscriptfile;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.51), plot (8.101), file (8.54), postscript (8.104)

8.106 power

Name: ˆ
power function

Usage:

function1 ˆ function2 : (function, function) → function

Parameters:

• function1 and function2 represent functions

Description:

• ˆ represents the power (function) on reals. The expression function1 ˆ function2 stands for the
function composed of the power function and the two functions function1 and function2, where
function1 is the base and function2 the exponent. If function2 is a constant integer, ˆ is defined
on negative values of function1. Otherwise ˆ is defined as ey·ln x.

• Note that whenever several ˆ are composed, the priority goes to the last ˆ. This corresponds to
the natural way of thinking when a tower of powers is written on a paper. Thus, 2^3^5 is read as
235

and is interpreted as 2(35).

Example 1:

> 5 ^ 2;
25

Example 2:

> x ^ 2;
x^2

Example 3:

> 3 ^ (-5);
4.1152263374485596707818930041152263374485596707818e-3

Example 4:

> (-3) ^ (-2.5);
@NaN@

Example 5:

> diff(sin(x) ^ exp(x));
sin(x)^exp(x) * ((cos(x) * exp(x)) / sin(x) + exp(x) * log(sin(x)))

Example 6:

89

> 2^3^5;
1.4134776518227074636666380005943348126619871175005e73
> (2^3)^5;
32768
> 2^(3^5);
1.4134776518227074636666380005943348126619871175005e73

See also: + (8.102), − (8.89), ∗ (8.90), / (8.36)

8.107 powers

Name: powers
special value for global state display

Description:

• powers is a special value used for the global state display. If the global state display is equal
to powers, all data will be output in dyadic notation with numbers displayed in a Maple and
PARI/GP compatible format.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.26), dyadic (8.40), hexadecimal (8.66), binary (8.16)

8.108 prec

Name: prec
controls the precision used in numerical computations.

Description:

• prec is a global variable. Its value represents the precision of the floating-point format used in
numerical computations.

• Many commands try to adapt their intern precision in order to have approximately n correct bits
in output, where n is the value of prec.

Example 1:

> display=binary!;
> prec=50;
The precision has been set to 50 bits.
> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011011_2 * 2^(2)
> prec=100;
The precision has been set to 100 bits.
> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011010110111001100001100111010001110
11101000100000011011_2 * 2^(2)

8.109 precision

Name: precision
returns the precision necessary to represent a number.

Usage:

precision(x) : constant → integer

90

Parameters:

• x is a dyadic number.

Description:

• precision(x) is by definition |x| if x equals 0, NaN, or Inf.

• If x is not zero, it can be uniquely written as x = m · 2e where m is an odd integer and e is an
integer. precision(x) returns the number of bits necessary to write m (e.g. dlog2(m)e).

Example 1:

> a=round(Pi,20,RN);
> precision(a);
19
> m=mantissa(a);
> ceil(log2(m));
19

See also: mantissa (8.86), exponent (8.50)

8.110 prepend

Name: .:
add an element at the beginning of a list.

Usage:

x .:L : (any type, list) → list

Parameters:

• x is an object of any type.

• L is a list (possibly empty).

Description:

• .: adds the element x at the beginning of the list L.

• Note that since x may be of any type, it can be in particular a list.

Example 1:

> 1.:[|2,3,4|];
[|1, 2, 3, 4|]

Example 2:

> [|1,2,3|].:[|4,5,6|];
[|[|1, 2, 3|], 4, 5, 6|]

Example 3:

> 1.:[||];
[|1|]

See also: :. (8.7), @ (8.22)

91

8.111 print

Name: print
prints an expression

Usage:

print(expr1,...,exprn) : (any type,..., any type) → void
print(expr1,...,exprn) > filename : (any type,..., any type, string) → void
print(expr1,...,exprn) >> filename : (any type,...,any type, string) → void

Parameters:

• expr represents an expression

• filename represents a character sequence indicating a file name

Description:

• print(expr1,...,exprn) prints the expressions expr1 through exprn separated by spaces and followed
by a newline.

If a second argument filename is given after a single ”>”, the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ”>>” is given, the output will be appended to the file filename.

The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).

Remark that if one of the expressions expri given in argument is of type string, the character
sequence expri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by quotes (’”’). Nevertheless, escape sequences used upon defining character
sequences are interpreted immediately.

Example 1:

> print(x + 2 + exp(sin(x)));
x + 2 + exp(sin(x))
> print("Hello","world");
Hello world
> print("Hello","you", 4 + 3, "other persons.");
Hello you 7 other persons.

Example 2:

> print("Hello");
Hello
> print([|"Hello"|]);
[|"Hello"|]
> s = "Hello";
> print(s,[|s|]);
Hello [|"Hello"|]
> t = "Hello\tyou";
> print(t,[|t|]);
Hello you [|"Hello you"|]

Example 3:

> print(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))

92

Example 4:

> print(x + 2 + exp(sin(x))) >> "foo.sol";

Example 5:

93

> display = decimal;
Display mode is decimal numbers.
> a = evaluate(sin(pi * x), 0.25);
> b = evaluate(sin(pi * x), [0.25; 0.25 + 1b-50]);
> print(a);
0.70710678118654752440084436210484903928483593768847
> display = binary;
Display mode is binary numbers.
> print(a);
1.011010100000100111100110011001111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 2^(-1)
> display = hexadecimal;
Display mode is hexadecimal numbers.
> print(a);
0xb.504f333f9de6484597d89b3754abe9f1d6f60ba88p-4
> display = dyadic;
Display mode is dyadic numbers.
> print(a);
33070006991101558613323983488220944360067107133265b-165
> display = powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> print(a);
33070006991101558613323983488220944360067107133265 * 2^(-165)
> display = decimal;
Display mode is decimal numbers.
> midpointmode = off;
Midpoint mode has been deactivated.
> print(b);
[0.70710678118654752440084436210484903928483593768844;0.707106781186549497437217
82517557347782646274417048]
> midpointmode = on;
Midpoint mode has been activated.
> print(b);
0.7071067811865~4/5~
> display = dyadic;
Display mode is dyadic numbers.
> print(b);
[2066875436943847413332748968013809022504194195829b-161;165350034955508254441962
37019385936414432675156571b-164]
> display = decimal;
Display mode is decimal numbers.
> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> fullparentheses = off;
Full parentheses mode has been deactivated.
> print(x + x * ((x + 1) + 1));
x + x * (x + 1 + 1)
> fullparentheses = on;
Full parentheses mode has been activated.
> print(x + x * ((x + 1) + 1));
x + (x * ((x + 1) + 1))

See also: write (8.160), printexpansion (8.112), printhexa (8.114), printfloat (8.113), printxml
(8.115), readfile (8.122), autosimplify (8.14), display (8.35), midpointmode (8.88), fullparenthe-
ses (8.60), evaluate (8.45)

94

8.112 printexpansion

Name: printexpansion
prints a polynomial in Horner form with its coefficients written as a expansions of double precision num-
bers

Usage:

printexpansion(polynomial) : (function) → void

Parameters:

• polynomial represents the polynomial to be printed

Description:

• The command printexpansion prints the polynomial polynomial in Horner form writing its coef-
ficients as expansions of double precision numbers. The double precision numbers themselves are
displayed in hexadecimal memory notation (see printhexa).
If some of the coefficients of the polynomial polynomial are not floating-point constants but constant
expressions, they are evaluated to floating-point constants using the global precision prec. If a
rounding occurs in this evaluation, a warning is displayed.
If the exponent range of double precision is not sufficient to display all the mantissa bits of a
coefficient, the coefficient is displayed rounded and a warning is displayed.
If the argument polynomial does not a polynomial, nothing but a warning or a newline is displayed.
Constants can be displayed using printexpansion since they are polynomials of degree 0.

Example 1:

> printexpansion(roundcoefficients(taylor(exp(x),5,0),[|DD...|]));
0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x * ((0
x3fc5555555555555 + 0x3c65555555555555) + x * ((0x3fa5555555555555 + 0x3c4555555
5555555) + x * (0x3f81111111111111 + 0x3c01111111111111)))))

Example 2:

> printexpansion(remez(exp(x),5,[-1;1]));
(0x3ff0002eec908ce9 + 0xbc7df99eb225af5b + 0xb8d55834b08b1f18) + x * ((0x3ff0002
835917719 + 0x3c6d82c073b25ebf + 0xb902cf062b54b7b7) + x * ((0x3fdff2d7e6a9c5e9
+ 0xbc7b09a95b0d520f + 0xb915b639add55731 + 0x35b0000000000000) + x * ((0x3fc54d
67338ba09f + 0x3c4867596d0631cf + 0xb8ef0756bdb4af62 + 0x3580000000000000) + x *
((0x3fa66c209b825167 + 0x3c45ec5b6655b076 + 0xb8d8c125286400ba + 0x357000000000
0000) + x * (0x3f81e55425e72ab4 + 0x3c263b25a1bf597b + 0xb8c843e0401dadea + 0x35
70000000000000)))))

Example 3:

> verbosity = 1!;
> prec = 3500!;
> printexpansion(pi);
(0x400921fb54442d18 + 0x3ca1a62633145c07 + 0xb92f1976b7ed8fbc + 0x35c4cf98e80417
7d + 0x32631d89cd9128a5 + 0x2ec0f31c6809bbdf + 0x2b5519b3cd3a431b + 0x27e8158536
f92f8a + 0x246ba7f09ab6b6a9 + 0xa0eedd0dbd2544cf + 0x1d779fb1bd1310ba + 0x1a1a63
7ed6b0bff6 + 0x96aa485fca40908e + 0x933e501295d98169 + 0x8fd160dbee83b4e0 + 0x8c
59b6d799ae131c + 0x08f6cf70801f2e28 + 0x05963bf0598da483 + 0x023871574e69a459 +
0x8000000005702db3 + 0x8000000000000000)
Warning: the expansion is not complete because of the limited exponent range of
double precision.
Warning: rounding occurred while printing.

See also: printhexa (8.114), horner (8.69), print (8.111), prec (8.108), remez (8.125), taylor (8.151),
roundcoefficients (8.132)

95

8.113 printfloat

Name: printfloat
prints a constant value as a hexadecimal single precision number

Usage:

printfloat(constant) : constant → void

Parameters:

• constant represents a constant

Description:

• Prints a constant value as a hexadecimal number on 8 hexadecimal digits. The hexadecimal number
represents the integer equivalent to the 32 bit memory representation of the constant considered
as a single precision number.

If the constant value does not hold on a single precision number, it is first rounded to the nearest
single precision number before displayed. A warning is displayed in this case.

Example 1:

> printfloat(3);
0x40400000

Example 2:

> prec=100!;
> verbosity = 1!;
> printfloat(exp(5));
Warning: the given expression is not a constant but an expression to evaluate.
Warning: rounding occurred before printing a value as a simple.
0x431469c5

See also: printhexa (8.114)

8.114 printhexa

Name: printhexa
prints a constant value as a hexadecimal double precision number

Usage:

printhexa(constant) : constant → void

Parameters:

• constant represents a constant

Description:

• Prints a constant value as a hexadecimal number on 16 hexadecimal digits. The hexadecimal
number represents the integer equivalent to the 64 bit memory representation of the constant
considered as a double precision number.

If the constant value does not hold on a double precision number, it is first rounded to the nearest
double precision number before displayed. A warning is displayed in this case.

Example 1:

96

> printhexa(3);
0x4008000000000000

Example 2:

> prec=100!;
> verbosity = 1!;
> printhexa(exp(5));
Warning: the given expression is not a constant but an expression to evaluate.
Warning: rounding occurred before printing a value as a double.
0x40628d389970338f

See also: printfloat (8.113), printexpansion (8.112)

8.115 printxml

Name: printxml
prints an expression as an MathML-Content-Tree

Usage:

printxml(expr) : function → void
printxml(expr) > filename : (function, string) → void

printxml(expr) > > filename : (function, string) → void

Parameters:

• expr represents a functional expression

• filename represents a character sequence indicating a file name

Description:

• printxml(expr) prints the functional expression expr as a tree of MathML Content Definition
Markups. This XML tree can be re-read in external tools or by usage of the readxml command.

If a second argument filename is given after a single >, the MathML tree is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double > > is given, the output will be appended to the file filename.

Example 1:

97

> printxml(x + 2 + exp(sin(x)));

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated by sollya: http://sollya.gforge.inria.fr/ -->
<!-- syntax: printxml(...); example: printxml(x^2-2*x+5); -->
<?xml-stylesheet type="text/xsl" href="http://perso.ens-lyon.fr/nicolas.jourdan/
mathmlc2p-web.xsl"?>
<?xml-stylesheet type="text/xsl" href="mathmlc2p-web.xsl"?>
<!-- This stylesheet allows direct web browsing of MathML-c XML files (http:// o
r file://) -->

<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<annotation-xml encoding="MathML-Content">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<apply>
<plus/>
<apply>
<plus/>
<ci> x </ci>
<cn type="integer" base="10"> 2 </cn>
</apply>
<apply>
<exp/>
<apply>
<sin/>
<ci> x </ci>
</apply>
</apply>
</apply>
</apply>
</lambda>
</annotation-xml>
<annotation encoding="sollya/text">(x + 1b1) + exp(sin(x))</annotation>
</semantics>
</math>

Example 2:

> printxml(x + 2 + exp(sin(x))) > "foo.xml";

Example 3:

> printxml(x + 2 + exp(sin(x))) >> "foo.xml";

See also: readxml (8.123), print (8.111), write (8.160)

8.116 proc

Name: proc
defines a Sollya procedure

Usage:

98

proc(formal parameter1, formal parameter2,..., formal parameter n) begin procedure body end : void
→ procedure

proc(formal parameter1, formal parameter2,..., formal parameter n) begin procedure body return
expression; end : any type → procedure

Parameters:

• formal parameter1, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

• procedure body represents the imperative statements in the body of the procedure

• expression represents the expression proc shall evaluate to

Description:

• The proc keyword allows for defining procedures in the Sollya language. These procedures are
common Sollya objects that can be applied to actual parameters after definition. Upon such an
application, the Sollya interpreter applies the actual parameters to the formal parameters formal
parameter1 through formal parameter n and executes the procedure body. The procedure applied
to actual parameters evaluates then to the expression expression in the return statement after
the procedure body or to void, if no return statement is given (i.e. a return void statement is
implicitly given).

• Sollya procedures defined by proc have no name. They can be bound to an identifier by assign-
ing the procedure object a proc expression produces to an identifier. However, it is possible to
use procedures without giving them any name. For instance, Sollya procedures, i.e. procedure
objects, can be elements of lists. They can even be given as an argument to other internal Sollya
procedures. See also procedure on this subject.

• Upon definition of a Sollya procedure using proc, no type check is performed. More precisely, the
statements in procedure body are merely parsed but not interpreted upon procedure definition with
proc. Type checks are performed once the procedure is applied to actual parameters or to void.
At this time, it is checked whether the number of actual parameters corresponds to the number
of formal parameters. Type checks are further performed upon execution of each statement in
procedure body and upon evaluation of the expression expression to be returned.

Procedures defined by proc containing a quit or restart command cannot be executed (i.e. ap-
plied). Upon application of a procedure, the Sollya interpreter checks beforehand for such a
statement. If one is found, the application of the procedure to its arguments evaluates to error.
A warning is displayed. Remark that in contrast to other type or semantic correctness checks, this
check is really performed before interpreting any other statement in body of the procedure.

• By means provided by the var keyword, it is possible to declare local variables and thus to have
full support of recursive procedures. This means a procedure defined using proc may contain in its
procedure body an application of itself to some actual parameters: it suffices to assign the procedure
(object) to an identifier with an appropriate name.

• Sollya procedures defined using proc may return other procedures. Further procedure body may
contain assignments of locally defined procedure objects to identifiers. See var for the particular
behaviour of local and global variables.

• The expression expression returned by a procedure is evaluated with regard to Sollya commands,
procedures and external procedures. Simplification may be performed. However, an application of
a procedure defined by proc to actual parameters evaluates to the expression expression that may
contain the free global variable or that may be composed.

Example 1:

99

> succ = proc(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
begin
nop;
return (n) + (1);
end

Example 2:

> add = proc(m,n) { var res; res := m + n; return res; };
> add(5,6);
11
> add;
proc(m, n)
begin
var res;
res := (m) + (n);
return res;
end
> verbosity = 1!;
> add(3);
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> add(true,false);
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
Warning: the given expression or command could not be handled.
Warning: the given expression or command could not be handled.
error

Example 3:

> succ = proc(n) { return n + 1; };
> succ(5);
6
> succ(x);
1 + x

Example 4:

100

> hey = proc() { print("Hello world."); };
> hey();
Hello world.
> print(hey());
Hello world.
void
> hey;
proc()
begin
print("Hello world.");
return void;
end

Example 5:

> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };
> fac(5);
120
> fac(11);
39916800
> fac;
proc(n)
begin
var res;
if (n) == (0) then
res := 1
else
res := (n) * (fac((n) - (1)));
return res;
end

Example 6:

> myprocs = [| proc(m,n) { return m + n; }, proc(m,n) { return m - n; } |];
> (myprocs[0])(5,6);
11
> (myprocs[1])(5,6);
-1
> succ = proc(n) { return n + 1; };
> pred = proc(n) { return n - 1; };
> applier = proc(p,n) { return p(n); };
> applier(succ,5);
6
> applier(pred,5);
4

Example 7:

101

> verbosity = 1!;
> myquit = proc(n) { print(n); quit; };
> myquit;
proc(n)
begin
print(n);
quit;
return void;
end
> myquit(5);
Warning: a quit or restart command may not be part of a procedure body.
The procedure will not be executed.
Warning: an error occurred while executing a procedure.
Warning: the given expression or command could not be handled.
error

Example 8:

> printsucc = proc(n) { var succ; succ = proc(n) { return n + 1; }; print("Succe
ssor of",n,"is",succ(n)); };
> printsucc(5);
Successor of 5 is 6

Example 9:

> makeadd = proc(n) { var add; print("n =",n); add = proc(m,n) { return n + m; }
; return add; };
> makeadd(4);
n = 4
proc(m, n)
begin
nop;
return (n) + (m);
end
> (makeadd(4))(5,6);
n = 4
11

See also: return (8.128), externalproc (8.52), void (8.158), quit (8.118), restart (8.127), var (8.156)

8.117 procedure

Name: procedure
defines and assigns a Sollya procedure

Usage:

procedure identifier(formal parameter1, formal parameter2,..., formal parameter n) begin procedure
body end : void → void

procedure identifier(formal parameter1, formal parameter2,..., formal parameter n) begin procedure
body return expression; end : any type → void

Parameters:

• identifier represents the name of the procedure to be defined and assigned

• formal parameter1, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

102

• procedure body represents the imperative statements in the body of the procedure

• expression represents the expression procedure shall evaluate to

Description:

• The procedure keyword allows for defining and assigning procedures in the Sollya language. It is
an abbreviation to a procedure definition using proc with the same formal parameters, procedure
body and return-expression followed by an assignment of the procedure (object) to the identifier
identifier. In particular, all rules concerning local variables declared using the var keyword apply
for procedure.

Example 1:

> procedure succ(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
begin
nop;
return (n) + (1);
end

See also: proc (8.116), var (8.156)

8.118 quit

Name: quit
quits Sollya

Usage:

quit : void → void

Description:

• The command quit, when executed abandons the execution of a Sollya script and leaves the
Sollya interpreter unless the quit command is executed in a Sollya script read into a main
Sollya script by execute or #include.

Upon exiting the Sollya interpreter, all state is thrown away, all memory is deallocated, all bound
libraries are unbound and the temporary files produced by plot and externalplot are deleted.

If the quit command does not lead to the abandon of the Sollya interpreter, a warning is displayed.

Example 1:

> quit;

See also: restart (8.127), execute (8.46), plot (8.101), externalplot (8.51)

8.119 range

Name: range
keyword representing a range type

Usage:

103

range : type type

Description:

• range represents the range type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like range cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.52), boolean (8.17), constant (8.23), function (8.61), integer (8.73), list
of (8.80), string (8.144)

8.120 rationalapprox

Name: rationalapprox
returns a fraction close to a given number.

Usage:

rationalapprox(x,n) : (constant, integer) → function

Parameters:

• x is a number to approximate.

• n is a integer (representing a format).

Description:

• rationalapprox(x,n) returns a constant function of the form a/b where a and b are integers.
The value a/b is an approximation of x. The quality of this approximation is determined by the
parameter n that indicates the number of correct bits that a/b should have.

• The command is not safe in the sense that it is not ensured that the error between a/b and x is
less than 2−n.

• The following algorithm is used: x is first rounded downwards and upwards to a format of n bits,
thus obtaining an interval [xl, xu]. This interval is then developped into a continued fraction as
far as the representation is the same for every elements of [xl, xu]. The corresponding fraction is
returned.

• Since rational numbers are not a primitive object of Sollya, the fraction is returned as a constant
function. It can be quite amazing, because Sollya immediately simplifies a constant function by
evaluating it when the constant has to be displayed. To avoid this, you can use print (that displays
the expression representing the constant and not the constant itself) or the commands numerator
and denominator.

Example 1:

> pi10 = rationalapprox(Pi,10);
> pi50 = rationalapprox(Pi,50);
> pi100 = rationalapprox(Pi,100);
> print(pi10, ": ", simplify(floor(-log2(abs(pi10-Pi)/Pi))), "bits.");
22 / 7 : 11 bits.
> print(pi50, ": ", simplify(floor(-log2(abs(pi50-Pi)/Pi))), "bits.");
90982559 / 28960648 : 50 bits.
> print(pi100, ": ", simplify(floor(-log2(abs(pi100-Pi)/Pi))), "bits.");
4850225745369133 / 1543874804974140 : 101 bits.

Example 2:

104

> a=0.1;
> b=rationalapprox(a,4);
> numerator(b); denominator(b);
1
10
> print(simplify(floor(-log2(abs((b-a)/a)))), "bits.");
166 bits.

See also: print (8.111), numerator (8.94), denominator (8.29)

8.121 rd

Name: RD
constant representing rounding-downwards mode.

Description:

• RD is used in command round to specify that the value x must be rounded to the greatest
floating-point number y such that y ≤ x.

Example 1:

> display=binary!;
> round(Pi,20,RD);
1.1001001000011111101_2 * 2^(1)

See also: RZ (8.136), RU (8.135), RN (8.130), round (8.131)

8.122 readfile

Name: readfile
reads the content of a file into a string variable

Usage:

readfile(filename) : string → string

Parameters:

• filename represents a character sequence indicating a file name

Description:

• readfile opens the file indicated by filename, reads it and puts its contents in a character sequence
of type string that is returned.

If the file indicated by filename cannot be opened for reading, a warning is displayed and readfile
evaluates to an error variable of type error.

Example 1:

> print("Hello world") > "myfile.txt";
> t = readfile("myfile.txt");
> t;
Hello world

Example 2:

105

> verbosity=1!;
> readfile("afile.txt");
Warning: the file "afile.txt" could not be opened for reading.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error

See also: parse (8.98), execute (8.46), write (8.160), print (8.111)

8.123 readxml

Name: readxml
reads an expression written as a MathML-Content-Tree in a file

Usage:

readxml(filename) : string → function | error

Parameters:

• filename represents a character sequence indicating a file name

Description:

• readxml(filename) reads the first occurrence of a lambda application with one bounded variable on
applications of the supported basic functions in file filename and returns it as a Sollya functional
expression.

If the file filename does not contain a valid MathML-Content tree, readxml tries to find an ”an-
notation encoding” markup of type ”sollya/text”. If this annotation contains a character sequence
that can be parsed by parse, readxml returns that expression. Otherwise readxml displays a
warning and returns an error variable of type error.

Example 1:

> readxml("readxmlexample.xml");
2 + x + exp(sin(x))

See also: printxml (8.115), readfile (8.122), parse (8.98)

8.124 relative

Name: perturb
indicates a relative error for externalplot

Usage:

perturb : absolute|relative

Description:

• The use of perturb in the command externalplot indicates that during plotting in externalplot
a relative error is to be considered.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.51), absolute (8.2), bashexecute (8.15)

106

8.125 remez

Name: remez
computes the minimax of a function on an interval.

Usage:

remez(f, n, range, w, quality) : (function, integer, range, function, constant) → function
remez(f, L, range, w, quality) : (function, list, range, function, constant) → function

Parameters:

• f is the function to be approximated

• n is the degree of the polynomial that must approximate f

• L is a list of monomials that can be used to represent the polynomial that must approximate f

• range is the interval where the function must be approximated

• w (optional) is a weight function. Default is 1.

• quality (optional) is a parameter that controls the quality of the returned polynomial p, with respect
to the exact minimax p?. Default is 1e-5.

Description:

• remez computes an approximation of the function f with respect to the weight function w on
the interval range. More precisely, it searches a polynomial p such that ‖pw − f‖∞ is (almost
minimal) among all polynomials p of a certain form. The norm is the infinite norm, e.g. ‖g‖∞ =
max{|g(x)|, x ∈ range}.

• If w = 1 (the default case), it consists in searching the best polynomial approximation of f with
respect to the absolute error. If f = 1 and w is of the form 1/g, it consists in searching the best
polynomial approximation of g with respect to the relative error.

• If n is given, the polynomial p is searched among the polynomials with degree not greater than
n. If L is given, the polynomial p is searched as a linear combination of monomials Xk where k
belongs to L. L may contain ellipses but cannot be end-elliptic.

• The polynomial is obtained by a convergent iteration called Remez’ algorithm. The algorithm
computes a sequence p1, . . . , pk, . . . such that ek = ‖pkw − f‖∞ converges towards the optimal
value e. The algorithm is stopped when the relative error between ek and e is less than quality.

• Note: the algorithm may not converge in certain cases. Moreover, it may converge towards a
polynomial that is not optimal. These cases correspond to the cases when the Haar condition is
not fulfilled. See [Cheney - Approximation theory] for details.

Example 1:

> p = remez(exp(x),5,[0;1]);
> degree(p);
5
> dirtyinfnorm(p-exp(x),[0;1]);
1.12956984638214536849843017679626063762687503980789e-6

Example 2:

> p = remez(1,[|0,2,4,6,8|],[0,Pi/4],1/cos(x));
> canonical=on!;
> p;
0.99999999994393749280444571988532724907643631727379 + -0.4999999957155746773720
49316308368345636630397481628 * x^2 + 4.1666613233501090518825397221274871865177
52418561e-2 * x^4 + -1.38865291475286141707180658383176799662601690152622e-3 * x
^6 + 2.43726791911116269422173866792791676168996590663655e-5 * x^8

107

Example 3:

> p1 = remez(exp(x),5,[0;1],default,1e-5);
> p2 = remez(exp(x),5,[0;1],default,1e-10);
> p3 = remez(exp(x),5,[0;1],default,1e-15);
> dirtyinfnorm(p1-exp(x),[0;1]);
1.12956984638214536849843017679626063762687503980789e-6
> dirtyinfnorm(p2-exp(x),[0;1]);
1.1295698022747868733217420751772838986192666255395e-6
> dirtyinfnorm(p3-exp(x),[0;1]);
1.1295698022747868733217420751772838986192666255395e-6

See also: dirtyinfnorm (8.33), infnorm (8.72)

8.126 rename

Name: rename
rename the free variable.

Usage:

rename(ident1,ident2) : void

Parameters:

• ident1 is the current name of the free variable.

• ident2 is a fresh name.

Description:

• rename lets one change the name of the free variable. Sollya can handle only one free variable
at a time. The first time in a session that an unbound name is used in a context where it can be
interpreted as a free variable, the name is used to represent the free variable of Sollya. In the
following, this name can be changed using rename.

• Be careful: if ident2 has been set before, its value will be lost. Use the command isbound to know
if ident2 is already used or not.

• If ident1 is not the current name of the free variable, an error occurs.

• If rename is used at a time when the name of the free variable has not been defined, ident1 is
just ignored and the name of the free variable is set to ident2.

Example 1:

> f=sin(x);
> f;
sin(x)
> rename(x,y);
> f;
sin(y)

Example 2:

> a=1;
> f=sin(x);
> rename(x,a);
> a;
a
> f;
sin(a)

108

Example 3:

> verbosity=1!;
> f=sin(x);
> rename(y,z);
Warning: the current free variable is named "x" and not "y". Can only rename the
free variable.
The last command will have no effect.

Example 4:

> rename(x,y);
> isbound(x);
false
> isbound(y);
true

See also: isbound (8.75)

8.127 restart

Name: restart
brings Sollya back to its initial state

Usage:

restart : void → void

Description:

• The command restart brings Sollya back to its initial state. All current state is abandoned, all
libraries unbound and all memory freed.

The restart command has no effect when executed inside a Sollya script read into a main Sollya
script using execute. It is executed in a Sollya script included by a #include macro.

Using the restart command in nested elements of imperative programming like for or while loops
is possible. Since in most cases abandoning the current state of Sollya means altering a loop
invariant, warnings of the impossibility of continuing a loop may follow unless the state is rebuilt.

Example 1:

> print(exp(x));
exp(x)
> a = 3;
> restart;
The tool has been restarted.
> print(x);
x
> a;
Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "a" as "x".
x

Example 2:

109

> print(exp(x));
exp(x)
> for i from 1 to 10 do {
> print(i);
> if (i == 5) then restart;
> };
1
2
3
4
5
The tool has been restarted.
Warning: the tool has been restarted inside a for loop.
The for loop will no longer be executed.

Example 3:

> print(exp(x));
exp(x)
> a = 3;
> for i from 1 to 10 do {
> print(i);
> if (i == 5) then {
> restart;
> i = 7;
> };
> };
1
2
3
4
5
The tool has been restarted.
8
9
10
> print(x);
x
> a;
Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "a" as "x".
x

See also: quit (8.118), execute (8.46)

8.128 return

Name: return
indicates an expression to be returned in a procedure

Usage:

return expression : void

Parameters:

• expression represents the expression to be returned

110

Description:

• The keyword return allows for returning the (evaluated) expression expression at the end of a
begin-end-block (-block) used as a Sollya procedure body. See proc for further details concerning
Sollya procedure definitions.

Statements for returning expressions using return are only possible at the end of a begin-end-block
used as a Sollya procedure body. Only one return statement can be given per begin-end-block.

• If at the end of a procedure definition using proc no return statement is given, a return void
statement is implicitely added. Procedures, i.e. procedure objects, when printed out in Sollya
defined with an implicit return void statement are displayed with this statement explicitly given.

Example 1:

> succ = proc(n) { var res; res := n + 1; return res; };
> succ(5);
6
> succ;
proc(n)
begin
var res;
res := (n) + (1);
return res;
end

Example 2:

> hey = proc(s) { print("Hello",s); };
> hey("world");
Hello world
> hey;
proc(s)
begin
print("Hello", s);
return void;
end

See also: proc (8.116), void (8.158)

8.129 revert

Name: revert
reverts a list.

Usage:

revert(L) : list → list

Parameters:

• L is a list.

Description:

• revert(L) returns the same list, but with its elements in reverse order.

• If L is an end-elliptic list, revert will fail with an error.

Example 1:

111

> revert([| |]);
[| |]

Example 2:

> revert([|2,3,5,2,1,4|]);
[|4, 1, 2, 5, 3, 2|]

8.130 rn

Name: RN
constant representing rounding-to-nearest mode.

Description:

• RN is used in command round to specify that the value must be rounded to the nearest repre-
sentable floating-point number.

Example 1:

> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 2^(1)

See also: RD (8.121), RU (8.135), RZ (8.136), round (8.131)

8.131 round

Name: round
rounds a number to a floating-point format.

Usage:

round(x,n,mode) : (constant, integer, RD | RU | RN | RZ) → constant

Parameters:

• x is a constant to be rounded.

• n is the precision of the target format.

• mode is the desired rounding mode.

Description:

• round(x,n,mode) rounds x to a floating-point number with precision n, according to rounding-
mode mode.

• Subnormal numbers are not handled. The range of possible exponents is the range used for all
numbers represented in Sollya (e.g. basically the range used in the library MPFR). Please use the
functions double, doubleextended, doubledouble and tripledouble for roundings to classical
formats with their range of exponents.

Example 1:

> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 2^(1)

Example 2:

112

> display=binary!;
> a=2^(-1100);
> round(a,53,RN);
1._2 * 2^(-1100)
> double(a);
0

See also: RN (8.130), RD (8.121), RU (8.135), RZ (8.136), double (8.37), doubleextended (8.39),
doubledouble (8.38), tripledouble (8.154), roundcoefficients (8.132), roundcorrectly (8.133)

8.132 roundcoefficients

Name: roundcoefficients
rounds the coefficients of a polynomial to classical formats.

Usage:

roundcoefficients(p,L) : (function, list) → function

Parameters:

• p is a function. Usually a polynomial.

• L is a list of formats.

Description:

• If p is a polynomial and L a list of floating-point formats, roundcoefficients(p,L) rounds each
coefficient of p to the corresponding format in L.

• If p is not a polynomial, roundcoefficients does not do anything.

• If L contains other elements thanD, double, DD, doubledouble, TD and tripledouble, an
error occurs.

• The coefficients in p corresponding to Xi is rounded to the format L[i]. If L does not contain enough
elements (e.g. if length(L) < degree(p)+1), a warning is displayed. However, the coefficients cor-
responding to an element of L are rounded. The last coefficients (that do not have a corresponding
element in L) are kept with their own precision. If L contains too much elements, the last useless
elements are ignored. In particular L may be end-elliptic in which case roundcoefficients has the
natural behavior.

Example 1:

> p=exp(1) + x*(exp(2) + x*exp(3));
> display=binary!;
> roundcoefficients(p,[|DD,D,D|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * 1.0100000101011110010110111111011011111011000
10000011_2 * 2^(4))
> roundcoefficients(p,[|DD,D...|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * 1.0100000101011110010110111111011011111011000
10000011_2 * 2^(4))

Example 2:

113

> f=sin(exp(1)*x);
> display=binary!;
> f;
sin(x * 1.0101101111110000101010001011000101000101011101101001010100110101010111
11101110001010110001000000010011100111101001111001111000111011000101110011100010
1100000111101_2 * 2^(1))
> roundcoefficients(f,[|D...|]);
sin(x * 1.0101101111110000101010001011000101000101011101101001010100110101010111
11101110001010110001000000010011100111101001111001111000111011000101110011100010
1100000111101_2 * 2^(1))

Example 3:

> p=exp(1) + x*(exp(2) + x*exp(3));
> verbosity=1!;
> display=binary!;
> roundcoefficients(p,[|DD,D|]);
Warning: the number of the given formats does not correspond to the degree of th
e given polynomial.
Warning: the 0th coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.
Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.
Warning: the 1th coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.
Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.
Warning: rounding may have happened.
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * 1.0100000101011110010110111111011011111011000
10000010111110010110101001011110111111100010100110111010001001100001110100011100
10000010110000101100000111001011100101001_2 * 2^(4))

See also: double (8.37), doubledouble (8.38), tripledouble (8.154)

8.133 roundcorrectly

Name: roundcorrectly
rounds an approximation range correctly to some precision

Usage:

roundcorrectly(range) : range → constant

Parameters:

• range represents a range in which an exact value lies

Description:

• Let range be a range of values, determined by some approximation process, safely bounding an
unknown value v. The command roundcorrectly(range) determines a precision such that for this
precision, rounding to the nearest any value in range yields to the same result, i.e. to the correct
rounding of v.

If no such precision exists, a warning is displayed and roundcorrectly evaluates to NaN.

Example 1:

114

> printbinary(roundcorrectly([1.010001_2; 1.0101_2]));
1.01_2
> printbinary(roundcorrectly([1.00001_2; 1.001_2]));
1._2

Example 2:

> roundcorrectly([-1; 1]);
@NaN@

See also: round (8.131)

8.134 roundingwarnings

Name: roundingwarnings
global variable controlling whether or not there is a warning when roundings occur.

Description:

• roundingwarnings is a global variable. When its value is on, warnings are emitted in appropriate
verbosity modes (see verbosity) when roundings occur. When its value is off, these warnings are
suppressed.

• This mode depends on a verbosity of at least 1. See verbosity for more details.

• Default is on when the standard input is a terminal and off when Sollya input is read from a file.

Example 1:

> verbosity=1!;
> roundingwarnings = on;
Rounding warning mode has been activated.
> exp(0.1);
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.1051709180756476248117078264902466682245471947375
> roundingwarnings = off;
Rounding warning mode has been deactivated.
> exp(0.1);
1.1051709180756476248117078264902466682245471947375

See also: on (8.96), off (8.95), verbosity (8.157), midpointmode (8.88)

8.135 ru

Name: RU
constant representing rounding-upwards mode.

Description:

• RU is used in command round to specify that the value x must be rounded to the smallest
floating-point number y such that x ≤ y.

Example 1:

115

> display=binary!;
> round(Pi,20,RU);
1.100100100001111111_2 * 2^(1)

See also: RZ (8.136), RD (8.121), RN (8.130), round (8.131)

8.136 rz

Name: RZ
constant representing rounding-to-zero mode.

Description:

• RZ is used in command round to specify that the value must be rounded to the closest floating-
point number towards zero. It just consists in truncate the value to the desired format.

Example 1:

> display=binary!;
> round(Pi,20,RZ);
1.1001001000011111101_2 * 2^(1)

See also: RD (8.121), RU (8.135), RN (8.130), round (8.131)

8.137 searchgal

Name: searchgal
searches for a preimage of a function such that the rounding the image commits an error smaller than a
constant

Usage:

searchgal(function, start, preimage precision, steps, format, error bound) : (function, constant, integer,
integer, D|double|DD|doubledouble|DE|doubleextended|TD|tripledouble, constant) → list

searchgal(list of functions, start, preimage precision, steps, list of format, list of error bounds) : (list,
constant, integer, integer, list, list) → list

Parameters:

• function represents the function to be considered

• start represents a value around which the search is to be performed

• preimage precision represents the precision (discretisation) for the eligible preimage values

• steps represents the log2 of the number of search steps to be performed

• format represents the format the image of the function is to be rounded to

• error bound represents a upper bound on the relative rounding error when rounding the image

• list of functions represents the functions to be considered

• list of formats represents the respective formats the images of the functions are to be rounded to

• list of error bounds represents a upper bound on the relative rounding error when rounding the
image

Description:

116

• The command searchgal searches for a preimage z of a function function or a list of functions list
of functions such that z is a floating-point number with preimage precision significant mantissa
bits and the image y of the function, respectively each image yi of the functions, rounds to format
format respectively to the corresponding format in list of format with a relative rounding error less
than error bound respectively the corresponding value in list of error bounds. During this search,
at most 2 raised to steps attempts are made. The search starts with a preimage value equal to
start. This value is then increased and decreased by 1 ulp in precision preimage precision until a
value is found or the step limit is reached.

If the search finds an appropriate preimage z, searchgal evaluates to a list containing this value.
Otherwise, searchgal evaluates to an empty list.

Example 1:

> searchgal(log(x),2,53,15,DD,1b-112);
[| |]
> searchgal(log(x),2,53,18,DD,1b-112);
[|2.0000000000384972054234822280704975128173828125|]

Example 2:

> f = exp(x);
> s = searchgal(f,2,53,18,DD,1b-112);
> if (s != [||]) then {
> v = s[0];
> print("The rounding error is 2^(",evaluate(log2(abs(DD(f)/f - 1)),v),")");
> } else print("No value found");
The rounding error is 2^(-1.12106878438809380148206984258358542322113874177832e
2)

Example 3:

> searchgal([|sin(x),cos(x)|],1,53,15,[|D,D|],[|1b-62,1b-60|]);
[|1.00000000000159494639717649988597258925437927246094|]

See also: round (8.131), double (8.37), doubledouble (8.38), tripledouble (8.154), evaluate (8.45),
worstcase (8.159)

8.138 simplify

Name: simplify
simplifies an expression representing a function

Usage:

simplify(function) : function → function

Parameters:

• function represents the expression to be simplified

Description:

• The command simplify simplifies constant subexpressions of the expression given in argument
representing the function function. Those constant subexpressions are evaluated in using floating-
point arithmetic with the global precision prec.

Example 1:

117

> print(simplify(sin(pi * x)));
sin(3.14159265358979323846264338327950288419716939937508 * x)
> print(simplify(erf(exp(3) + x * log(4))));
erf(2.00855369231876677409285296545817178969879078385544e1 + x * 1.3862943611198
906188344642429163531361510002687205)

Example 2:

> prec = 20!;
> t = erf(0.5);
> s = simplify(erf(0.5));
> prec = 200!;
> t;
0.5204998778130465376827466538919645287364515757579637000588058
> s;
0.52050018310546875

See also: simplifysafe (8.139), autosimplify (8.14), prec (8.108), evaluate (8.45)

8.139 simplifysafe

Name: simplifysafe
simplifies an expression representing a function

Usage:

simplifysafe(function) : function → function

Parameters:

• function represents the expression to be simplified

Description:

• The command simplifysafe simplifies the expression given in argument representing the function
function. The command simplifysafe does not endanger the safety of computations even in
Sollya’s floating-point environment: the function returned is mathematically equal to the function
function.

Remark that the simplification provided by simplifysafe is not perfect: they may exist simpler
equivalent expressions for expressions returned by simplifysafe.

Example 1:

> print(simplifysafe((6 + 2) + (5 + exp(0)) * x));
8 + 6 * x

Example 2:

> print(simplifysafe((log(x - x + 1) + asin(1))));
(pi) / 2

Example 3:

> print(simplifysafe((log(x - x + 1) + asin(1)) - (atan(1) * 2)));
(pi) / 2 - (pi) / 4 * 2

See also: simplify (8.138), autosimplify (8.14)

118

8.140 sin

Name: sin
the sine function.

Description:

• sin is the usual sine function.

• It is defined for every real number x.

See also: asin (8.10), cos (8.24), tan (8.149)

8.141 sinh

Name: sinh
the hyperbolic sine function.

Description:

• sinh is the usual hyperbolic sine function: sinh(x) = ex−e−x

2 .

• It is defined for every real number x.

See also: asinh (8.11), cosh (8.25), tanh (8.150)

8.142 sort

Name: sort
sorts a list of real numbers.

Usage:

sort(L) : list → list

Parameters:

• L is a list.

Description:

• If L contains only constant values, sort(L) returns the same list, but sorted increasingly.

• If L contains at least one element that is not a constant, the command fails with a type error.

• If L is an end-elliptic list, sort will fail with an error.

Example 1:

> sort([| |]);
[| |]
> sort([|2,3,5,2,1,4|]);
[|1, 2, 2, 3, 4, 5|]

8.143 sqrt

Name: sqrt
square root.

Description:

• sqrt is the square root, e.g. the inverse of the function square:
√
y is the unique positive x such

that x2 = y.

• It is defined only for x in [0; +∞].

119

8.144 string

Name: string
keyword representing a string type

Usage:

string : type type

Description:

• string represents the string type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like string cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.52), boolean (8.17), constant (8.23), function (8.61), integer (8.73), list
of (8.80), range (8.119)

8.145 subpoly

Name: subpoly
restricts the monomial basis of a polynomial to a list of monomials

Usage:

subpoly(polynomial, list) : (function, list) → function

Parameters:

• polynomial represents the polynomial the coefficients are taken from

• list represents the list of monomials to be taken

Description:

• subpoly extracts the coefficients of a polynomial polynomial and builds up a new polynomial out
of those coefficients associated to monomial degrees figuring in the list list.

If polynomial represents a function that is not a polynomial, subpoly returns 0.

If list is a list that is end-elliptic, let be j the last value explicitly specified in the list. All coefficients
of the polynomial associated to monomials greater or equal to j are taken.

Example 1:

> p = taylor(exp(x),5,0);
> s = subpoly(p,[|1,3,5|]);
> print(p);
1 + x * (1 + x * (0.5 + x * (1 / 6 + x * (1 / 24 + x / 120))))
> print(s);
x * (1 + x^2 * (1 / 6 + x^2 / 120))

Example 2:

> p = remez(atan(x),10,[-1,1]);
> subpoly(p,[|1,3,5...|]);
x * (0.99986632946591986997581285958052433296267358727218 + x^2 * (-0.3303047855
0486126059609343553423613729820606468353 + x^2 * (0.1801592946365234679974377511
78959039617773054102026 + x * (-1.2170485832186602890617583564939003385198500559
4189e-14 + x * (-8.5156350833702702996505336803770858918120961559704e-2 + x * (1
.39681284176342339364451388757935284353552217389724e-14 + x * (2.084511417543456
16430184477848098809559834125291788e-2 + x * (-5.6810131012579436265697622426011
325584073285588859e-15))))))))

120

Example 3:

> subpoly(exp(x),[|1,2,3|]);
0

See also: roundcoefficients (8.132), taylor (8.151), remez (8.125)

8.146 substitute

Name: substitute
replace the occurrences of the free variable in an expression.

Usage:

substitute(f,g) : (function, function) → function
substitute(f,t) : (function, constant) → constant

Parameters:

• f is a function.

• g is a function.

• t is a real number.

Description:

• substitute(f, g) produces the function (f ◦ g) : x 7→ f(g(x)).

• substitute(f, t) is the constant f(t). Note that the constant is represented by its expression until
it has been evaluated (exactly the same way as if you type the expression f replacing instances of
the free variable by t).

• If f is stored in a variable F. It is absolutely equivalent to writing F(g) or F(t).

Example 1:

> f=sin(x);
> g=cos(x);
> substitute(f,g);
sin(cos(x))
> f(g);
sin(cos(x))

Example 2:

> a=1;
> f=sin(x);
> substitute(f,a);
0.84147098480789650665250232163029899962256306079837
> f(a);
0.84147098480789650665250232163029899962256306079837

8.147 sup

Name: sup
gives the upper bound of an interval.

Usage:

121

sup(I) : range → constant
sup(x) : constant → constant

Parameters:

• I is an interval.

• x is a real number.

Description:

• Returns the upper bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

• When called on a real number x, sup considers it as an interval formed of a single point: [x, x]. In
other words, sup behaves like the identity.

Example 1:

> sup([1;3]);
3
> sup(5);
5

Example 2:

> display=binary!;
> I=[0; 0.111110000011111_2];
> sup(I);
1.11110000011111_2 * 2^(-1)
> prec=12!;
> sup(I);
1.11110000011111_2 * 2^(-1)

See also: inf (8.71), mid (8.87)

8.148 tail

Name: tail
gives the tail of a list.

Usage:

tail(L) : list → any type

Parameters:

• L is a list.

Description:

• tail(L) returns the list L without its first element.

• If L is empty, the command will fail with an error.

• tail can also be used with end-elliptic lists. In this case, the result of tail is also an end-elliptic
list.

Example 1:

> tail([|1,2,3|]);
[|2, 3|]
> tail([|1,2...|]);
[|2...|]

See also: head (8.65)

122

8.149 tan

Name: tan
the tangent function.

Description:

• tan is the tangent function, defined by tan(x) = sin(x)/ cos(x).

• It is defined for every real number x that is not of the form nπ + π/2 where n is an integer.

See also: atan (8.12), cos (8.24), sin (8.140)

8.150 tanh

Name: tanh
the hyperbolic tangent function.

Description:

• tanh is the hyperbolic tangent function, defined by tanh(x) = sinh(x)/ cosh(x).

• It is defined for every real number x.

See also: atanh (8.13), cosh (8.25), sinh (8.141)

8.151 taylor

Name: taylor
computes a Taylor expansion of a function in a point

Usage:

taylor(function, degree, point) : (function, integer, constant) → function

Parameters:

• function represents the function to be expanded

• degree represents the degree of the expansion to be delivered

• point represents the point in which the function is to be developped

Description:

• The command taylor returns an expression that is a Taylor expansion of function function in point
point having the degree degree.

Let f be the function function, t be the point point and n be the degree degree. Then, tay-
lor(function,degree,point) evaluates to an expression mathematically equal to

n∑
i=0

f (i) (t)
i!

(x− t)i

Remark that taylor evaluates to 0 if the degree degree is negative.

Example 1:

> print(taylor(exp(x),5,0));
1 + x * (1 + x * (0.5 + x * (1 / 6 + x * (1 / 24 + x / 120))))

Example 2:

123

> print(taylor(asin(x),7,0));
x * (1 + x^2 * (1 / 6 + x^2 * (9 / 120 + x^2 * 225 / 5040)))

Example 3:

> print(taylor(erf(x),6,0));
x * (1 / sqrt((pi) / 4) + x^2 * ((sqrt((pi) / 4) * 4 / (pi) * (-2)) / 6 + x^2 *
(sqrt((pi) / 4) * 4 / (pi) * 12) / 120))

See also: remez (8.125)

8.152 taylorrecursions

Name: taylorrecursions
controls the number of recursion steps when applying Taylor’s rule.

Description:

• taylorrecursions is a global variable. Its value represents the number of steps of recursion that
are used when applying Taylor’s rule. This rule is applied by the interval evaluator present in the
core of Sollya (and particularly visible in commands like infnorm).

• To improve the quality of an interval evaluation of a function f , in particular when there are
problems of decorrelation), the evaluator of Sollya uses Taylor’s rule: f([a, b]) ⊆ f(m) + [a −
m, b−m] · f ′([a, b]) where m = a+b

2 . This rule can be applied recursively. The number of step in
this recursion process is controlled by taylorrecursions.

• Setting taylorrecursions to 0 makes Sollya use this rule only one time; setting it to 1 makes
Sollya use the rule two times, and so on. In particular: the rule is always applied at least once.

Example 1:

> f=exp(x);
> p=remez(f,3,[0;1]);
> taylorrecursions=0;
The number of recursions for Taylor evaluation has been set to 0.
> evaluate(f-p, [0;1]);
[-0.46839364816303627522963565754743169862357620487739;0.46947781754667086491682
464997088054443583003517779]
> taylorrecursions=1;
The number of recursions for Taylor evaluation has been set to 1.
> evaluate(f-p, [0;1]);
[-0.13813111495387910066337940912697015317218647208804;0.13921528433751369035056
840155041899898444030238844]

8.153 timing

Name: timing
global variable controlling timing measures in Sollya.

Description:

• timing is a global variable. When its value is on, the time spent in each command is measured
and displayed (for verbosity levels higher than 1).

Example 1:

124

> verbosity=1!;
> timing=on;
Timing has been activated.
> p=remez(sin(x),10,[-1;1]);
Information: Remez: computing the matrix spent 2 ms
Information: Remez: computing the quality of approximation spent 14 ms
Information: Remez: computing the matrix spent 2 ms
Information: Remez: computing the quality of approximation spent 14 ms
Information: Remez: computing the matrix spent 2 ms
Information: Remez: computing the quality of approximation spent 14 ms
Information: computing a minimax approximation spent 92 ms
Information: assignment spent 92 ms
Information: full execution of the last parse chunk spent 92 ms

See also: on (8.96), off (8.95)

8.154 tripledouble

Names: tripledouble, TD
represents a number as the sum of three IEEE doubles.

Description:

• tripledouble is both a function and a constant.

• As a function, it rounds its argument to the nearest number that can be written as the sum of
three double precision numbers.

• The algorithm used to compute tripledouble(x) is the following: let xh = double(x) and let
xl = doubledouble(x-xh). Return the number xh+xl. Note that if the current precision is not
sufficient to represent exactly xh+xl, a rounding will occur and the result of tripledouble(x) will
be useless.

• As a constant, it symbolizes the triple-double precision format. It is used in contexts when a
precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See
the corresponding help pages for examples.

Example 1:

> verbosity=1!;
> a = 1+ 2^(-55)+2^(-115);
> TD(a);
Warning: rounding a value computed on less than 159 bits to triple-double precis
ion
1.00000000000000002775557561562891353466491600711096
> prec=110!;
> TD(a);
Warning: rounding a value computed on less than 159 bits to triple-double precis
ion
Warning: double rounding occurred on invoking the triple-double rounding operato
r.
Try to increase the working precision.
1.000000000000000027755575615628913

See also: double (8.37), doubleextended (8.39), doubledouble (8.38), roundcoefficients (8.132),
implementpoly (8.70)

125

8.155 true

Name: true
the boolean value representing the truth.

Description:

• true is the usual boolean value.

Example 1:

> true && false;
false
> 2>1;
true

See also: false (8.53), && (8.6), || (8.97)

8.156 var

Name: var
declaration of a local variable in a scope

Usage:

var identifier1, identifier2,... , identifiern : void

Parameters:

• identifier1, identifier2,... , identifiern represent variable identifiers

Description:

• The keyword var allows for the declaration of local variables identifier1 through identifiern in a
begin-end-block ({}-block). Once declared as a local variable, an identifier will shadow identifiers
declared in higher scopes and undeclared identifiers available at top-level.

Variable declarations using var are only possible in the beginning of a begin-end-block. Several
var statements can be given. Once another statement is given in a begin-end-block, no more var
statements can be given.

Variables declared by var statements are dereferenced as error until they are assigned a value.

Example 1:

> exp(x);
exp(x)
> a = 3;
> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1
true
5
3
> a;
3

See also: error (8.44)

126

8.157 verbosity

Name: verbosity
global variable controlling the quantity of information displayed by commands.

Description:

• verbosity accepts any integer value. At level 0, commands do not display anything on standard
out. Note that very critical information may however be displayed on standard err.

• Default level is 1. It displays important information such as warnings when roundings happen.

• For higher levels more information is displayed depending on the command.

Example 1:

> verbosity=0!;
> 1.2+"toto";
error
> verbosity=1!;
> 1.2+"toto";
Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> verbosity=2!;
> 1.2+"toto";
Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
Information: the expression or a partial evaluation of it has been the following
:
(1.1999) + ("toto")
error

See also: roundingwarnings (8.134)

8.158 void

Name: void
the functional result of a side-effect or empty argument resp. the corresponding type

Usage:

void : void | type type

Description:

• The variable void represents the functional result of a side-effect or an empty argument. It is used
only in combination with the applications of procedures or identifiers bound through externalproc
to external procedures.

The void result produced by a procedure or an external procedure is not printed at the prompt.
However, it is possible to print it out in a print statement or in complex data types such as lists.

127

The void argument is implicit when giving not argument to a procedure or an external procedure
when applied. It can be explicitly given nevertheless. For example, suppose that foo is a procedure
or an external procedure with a void argument. Then foo() and foo(void) are correct calls to foo.

• void is used also as a type identifier for externalproc. Typically, an external procedure taking
void as an argument or returning void is bound with a signature void − > some type or some
type − > void. See externalproc for more details.

Example 1:

> print(void);
void
> void;

Example 2:

> hey = proc() { print("Hello world."); };
> hey;
proc()
begin
print("Hello world.");
return void;
end
> hey();
Hello world.
> hey(void);
Hello world.
> print(hey());
Hello world.
void

Example 3:

> bashexecute("gcc -fPIC -Wall -c externalprocvoidexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocvoidexample externalprocvoidexam
ple.o");
> externalproc(foo, "./externalprocvoidexample", void -> void);
> foo;
foo(void) -> void
> foo();
Hello from the external world.
> foo(void);
Hello from the external world.
> print(foo());
Hello from the external world.
void

See also: error (8.44), proc (8.116), externalproc (8.52)

8.159 worstcase

Name: worstcase
searches for hard-to-round

Usage:

128

worstcase(function, preimage precision, preimage exponent range, image precision, error bound) :
(function, integer, range, integer, constant) → void

worstcase(function, preimage precision, preimage exponent range, image precision, error bound,
filename) : (function, integer, range, integer, constant, string) → void

Parameters:

• function represents the function to be considered

• preimage precision represents the precision of the preimages

• preimage exponent range represents the exponents in the preimage format

• image precision represents the precision of the format the images are to be rounded to

• error bound represents the upper bound for the search w.r.t. the relative rounding error

• filename represents a character sequence containing a filename

Description:

• The worstcase command is deprecated. It searches hard-to-round cases of a function. The com-
mand searchgal has a comparable functionality.

Example 1:

> worstcase(exp(x),24,[1,2],24,1b-26);
prec = 165
x = 1.99999988079071044921875 f(x) = 7.3890552520751953125 eps = 4
.5998601423446695596184695493764120138001954979037e-9 = 2^(-27.695763)
x = 2 f(x) = 7.38905620574951171875 eps = 1.4456360874967301812222
8379395533417878125150587072e-8 = 2^(-26.043720)

See also: round (8.131), searchgal (8.137), evaluate (8.45)

8.160 write

Name: write
prints an expression without separators

Usage:

write(expr1,...,exprn) : (any type,..., any type) → void
write(expr1,...,exprn) > filename : (any type,..., any type, string) → void
write(expr1,...,exprn) >> filename : (any type,...,any type, string) → void

Parameters:

• expr represents an expression

• filename represents a character sequence indicating a file name

Description:

• write(expr1,...,exprn) prints the expressions expr1 through exprn. The character sequences cor-
responding to the expressions are concatenated without any separator. No newline is displayed at
the end. In contrast to print, write expects the user to give all separators and newlines explicitly.

If a second argument filename is given after a single ”>”, the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ”>>” is given, the output will be appended to the file filename.

129

The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).

Remark that if one of the expressions expri given in argument is of type string, the character
sequence expri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by quotes (’”’). Nevertheless, escape sequences used upon defining character
sequences are interpreted immediately.

Example 1:

> write(x + 2 + exp(sin(x)));
> write("Hello\n");
x + 2 + exp(sin(x))Hello
> write("Hello","world\n");
Helloworld
> write("Hello","you", 4 + 3, "other persons.\n");
Helloyou7other persons.

Example 2:

> write("Hello","\n");
Hello
> write([|"Hello"|],"\n");
[|"Hello"|]
> s = "Hello";
> write(s,[|s|],"\n");
Hello[|"Hello"|]
> t = "Hello\tyou";
> write(t,[|t|],"\n");
Hello you[|"Hello you"|]

Example 3:

> write(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))

Example 4:

> write(x + 2 + exp(sin(x))) >> "foo.sol";

See also: print (8.111), printexpansion (8.112), printhexa (8.114), printfloat (8.113), printxml
(8.115), readfile (8.122), autosimplify (8.14), display (8.35), midpointmode (8.88), fullparenthe-
ses (8.60), evaluate (8.45)

130

	Compilation and installation of the Sollya tool
	Compilation dependencies
	Sollya command line options

	Introduction
	General principles
	Variables
	Data types
	Booleans
	Numbers
	Intervals
	Functions
	Strings
	Particular values
	Lists

	Iterative language elements: assignments, conditional statements and loops
	Blocks
	Assignments
	Conditional statements
	Loops

	Functional language elements: procedures
	Commands and functions
	abs
	absolute
	accurateinfnorm
	acos
	acosh
	and
	append
	approx
	asciiplot
	asin
	asinh
	atan
	atanh
	autosimplify
	bashexecute
	binary
	boolean
	canonical
	ceil
	checkinfnorm
	coeff
	concat
	constant
	cos
	cosh
	decimal
	default
	degree
	denominator
	diam
	diff
	dirtyfindzeros
	dirtyinfnorm
	dirtyintegral
	display
	divide
	double
	doubledouble
	doubleextended
	dyadic
	equal
	erf
	erfc
	error
	evaluate
	execute
	exp
	expand
	expm1
	exponent
	externalplot
	externalproc
	false
	file
	findzeros
	fixed
	floating
	floor
	fpminimax
	fullparentheses
	function
	ge
	gt
	guessdegree
	head
	hexadecimal
	honorcoeffprec
	hopitalrecursions
	horner
	implementpoly
	inf
	infnorm
	integer
	integral
	isbound
	isevaluable
	le
	length
	library
	listof
	log
	log10
	log1p
	log2
	lt
	mantissa
	mid
	midpointmode
	minus
	mult
	neq
	nop
	not
	numerator
	off
	on
	or
	parse
	perturb
	pi
	plot
	plus
	points
	postscript
	postscriptfile
	power
	powers
	prec
	precision
	prepend
	print
	printexpansion
	printfloat
	printhexa
	printxml
	proc
	procedure
	quit
	range
	rationalapprox
	rd
	readfile
	readxml
	relative
	remez
	rename
	restart
	return
	revert
	rn
	round
	roundcoefficients
	roundcorrectly
	roundingwarnings
	ru
	rz
	searchgal
	simplify
	simplifysafe
	sin
	sinh
	sort
	sqrt
	string
	subpoly
	substitute
	sup
	tail
	tan
	tanh
	taylor
	taylorrecursions
	timing
	tripledouble
	true
	var
	verbosity
	void
	worstcase
	write

