Users’ manual for the Sollya tool
Release 1.0

Laboratoire de I'Informatique du Parallélisme

UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668

Sylvain Chevillard Christoph Lauter

sylvain.chevillard@ens-lyon.fr christoph.lauter@ens-lyon.fr

Nicolas Jourdan

nicolas.jourdan@ens-lyon.fr

January 5, 2008

License

The Sollya tool is copyright (© 2008 Laboratoire de I'Informatique du Parallélisme - UMR CNRS -

ENS Lyon - UCB Lyon 1 - INRIA 5668.

The Sollya tool is open software. It is distributed and can be used, modified and redistributed
under the terms of the CeCILL-C licence available at http://www.cecill.info/| and reproduced in the
COPYING file of the distribution. The distribution contains parts of other libraries as a support for but
not integral part of Sollya. These libraries are reigned by the GNU Lesser General Public License that
is available at http://www.gnu.org/licenses/ and reproduced in the COPYING file of the distribution.

Contents

[L Compilation and installation of the Sollya tool

[2__Introduction|

[3 General principles|

6.2 Assignments|. Lo e e e
6.3 Conditional statements|. Lo

0.4 5

sylvain.chevillard@ens-lyon.fr
christoph.lauter@ens-lyon.fr
nicolas.jourdan@ens-lyon.fr
http://www.cecill.info/
http://www.gnu.org/licenses/

|7 Functional language elements: procedures| 16

8 _Commands and functions| 18
BIabd o o 18
B2 absolufel . . . o o o oo 18
8.3 _accurateinfnorml L L L 18
.. 19
8.5 acoshl. s 19
BE andl. oo 20
... 20
8.8 asclplot| e e e 21
.. 22
8.10 asinhl. 22
.. 23
BI2atanhl o o oo 23
8.13 autosimplify| e e 23
8.14 bashexecutel 24
8.15 b VI . e 25
BI6 Dooleanl v v oo o e e 25
BI7 canonicall o v oo 26
BIScalll o 27
8.19 checkinfnorml| 27
8.20 coefll s 28
... 29
.. 29
823 Ccodl . . . o e e 29
B24 coshl o 30
8.25 decimall e 30
8.26 defaultl 30
B.27 degree| L e e e 31
B28 denominatorl. o o o 31
B2 diaml o o 32
830 difff o 32
8.31 dirtyfindzeros|o e e 33
[8.32 dirtyinfnorm| 34
8.33 dirtyintegrall 35

4 displayl. 36
BB _dIvIdel o o 37
8.36 doublel 37
8.37 doubledoublel e 38
838 doubleextendedl 38
8.39 dyadicl e e 39
R.40 equall. 40
B.41 erfl 41
8.42 erfd. 41
B3 error] e 41
BAd evaluatd o oo 42
.. 43
BAG OXD. - « o o e e e 44
8.4 PAnd|. e e e e e e e e e e e e e 44
BAB CXPILL] . - o o o o oo e 45
8. 49 exponent]. e 45
3.00 externalplot| L 46
8.51 externalproc|. L e 46
8.52 falsel s 48
8.53 filel . . . e 49

BESHOON « © o oo e e e e e e 50
8.56 fullparentheses| 50
B.57 function] e e e 51
B.08 el . e e e e e 51
.00 gtl . . e e e e e e 52
BO0 SUGSSACETET . - - - o o o o 52
8.61 headl e e e e e e 53
8.62 hexadecimall 53
[8.63 honorcoeffprec| 54
8.64 hopitalrecursions| L L Lo e 54
... 55

[8.66 implementpoly| L 55
B.O7 1nfl e 58
R.68 Infnorml e e e 59
8.69 integer] L 61
.. 61
62

63

64

64

65

66

66

66

67

67

67

68

B.83 midl e e 68
[8.84 midpointmode]|. L L e e e e 69
B85 minusl e e 69
BRE Ul . - . . 70
... 71
... 72
5.89 1Ol L e e e e e e e e e 72
... 73
BOTOfl o 73
... 74
... 74
.94 parse] e e e e e e e e 75
.95 perturb| L e e 75
.90 DIl. . . . e e e e e 76
8.97 plot] . . . 77
B.98 plus| 78
... 79
B.I00postSCript] o e e e e e e 79
B.101postscriptfile] e e 79
... 80
... 81
.. 81
B.I05precision] e e e e e e e e 81
.. 82
S.A07TPTING| e e e e e e e e e e e e e e e e 82
B.108printexpansion| L L L L e e e 85
8.109p Hoat| e e e 86

8. 110printhexal e e e e 86
R 111printxml| e 87

8.129roundcorrectly] Lo L 105
BI30rul e 106
BI3Trzl. . . o e e e e 106
... 106
.. 107
B.134dstmplifysafe] oL e 108
... 109
BIZGSIOO © © « o o o e e e e e 109
BI3TS0rtl . . . o e e e 109
.. 109
... 110
8.140subpoly| e e 110
... 111

BI42supl. 111
BIZ3Malll. o o 112
S 144tanl L L e e e e e e e 113
8. 145tanhl L e 113
R.146taylor| 113
BI47TaylorTeCUursions] . . . « v v o v v e e 114
... 114
8.149tripledouble] oL 115
S 100truel ... L e e e e e 115
S IOIVALl . . . e e e e e e e s e s e 116
... 116
BIB3VOIdl © « o o o o o o 117
... 118
B ISDwritel e 119
[9 Grammar of the Sollya language| 121

1 Compilation and installation of the Sollya tool

The Sollya distribution can be compiled and installed using the usual ./configure, make, make
install procedure. Besides a C compiler, Sollya needs the following software libraries and tools to
be installed. The ./configure script checks for the installation of the libraries. However Sollya will

build without error if some of its external tools is not installed. In this case an error will be produced at
runtime.

e MPFR

e MPFI

e PARI version 2.3.0
e libxml2

e gnuplot

The use of the external tool rlwrap is highly recommended but not indispensable.

2 Introduction

Sollya is an interactive tool for handling numerical functions and working with arbitrary precision. It can
evaluate functions accurately, compute polynomial approximations of functions, automatically implement
polynomials for use in math libraries, plot functions, compute infinite norms, etc. The language Sollya
comes with is a full-featured script programming language with support for procedures etc.

Let us begin this manual with an example. Sollya does not allow command line edition; since that
may quickly become uncomfortable, we highly suggest to use the software rlwrap with Sollya:

/%rlurap sollya
>

Sollya manipulates only univariate functions. The first time that an unbound variable is used, this
name is fixed. It will be used to refer to the free variable. For instance, try

/% rlwrap sollya
> f = sin(x)/x;
> g = cos(y)-1;
Warning: the identifier "y" is neither assigned to, nor bound to a library
function nor equal to the current free variable.

Will interpret "y" as "x".

> g;
cos(x) - 1
>

Now, the name x can only be used to refer to the free variable:

> x=3;

Warning: the identifier "x" is already bound to the free variable or to a
library function

The command will have no effect.

Warning: the last assignment will have no effect.

>

If you really want to unbound x, you can use the rename command and change the name of the free
variable:

> rename(x,y);

Information: the free variable has been renamed from "x" to "y".
> g;

cos(y) - 1

> x=3;

> X;

3

>

As you have seen, you can name functions and easily work with. The basic thing to do with a function
is to evaluate it at some point:

> f(-2);

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.

0.454648713412840847698009932955872421351127485723941

evaluate(f,-2);

0.454648713412840847698009932955872421351127485723941106879

The printed value is generally a faithful rounding of the exact value at the working precision. The
working precision is controlled by the global variable prec:

> prec=7;

165

> prec=200;

The precision has been set to 200 bits.

> prec=7;

200

> £(-2);

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.
0.45464871341284084769800993295587242135112748572394513418948652

Sometimes, a faithful rounding cannot easily be computed. In such a case, an approximated value is
printed:

> sin(pi);

Warning: rounding has happened. The value displayed is not a faithful rounding
of the true result.
-0.379705991005939815725347821572628308530195421950339e-12715

The philosophy of Sollya is: whenever something is not exact, print a warning. This explains the
warnings in the previous examples. If the result can be shown to be exact, there is no warning:

> 5in(0);
0

Let us finish this Section with a small complete example that shows a bit of what can be done with
Sollya:

> restart;

The tool has been restarted.

> prec=50;

The precision has been set to 50 bits.

f=cos (2*exp(x));

d=[-1/8;1/8];

p=remez(f,2,d);

derivativeZeros = dirtyfindzeros(diff(p-f),d);
derivativeZeros = inf(d).:derivativeZeros:.sup(d);
max=0; for t in derivativeZeros do

~~V V V V V V

r = evaluate(abs(p-f), t);

if r > max then {max=r; argmax=t;};

¥
> print("The infinite norm of", p-f, "is", max, "and is reached at", argmax);
The infinite norm of (-0.41626557294429078481812212) + x * ((-0.1798067204872539
9037039096583612263e1) + x * (-0.38971068364047456444865247249254026e-1)) - cos(
2 * exp(x)) is 0.8630662505918363508472523%e-3 and is reached at -0.580167296300
62879863317e-1
>

In this example, we define a function f, an interval d and we compute the best degree-4 polynomial
approximation of f on d with respect to the infinite norm. In other words, max,eq{|p(x) — f(z)|} is
minimal amongst polynomials with degree not greater than 4. Then, we compute the list of the zeros of
the derivative of p — f and add the bounds of d to this list. Finally, we evaluate |p — f| for each point
in the list and store the maximum and the point where it is reached. We conclude by printing the result
in a formatted way.

Note that you do not really need to use such a script for computing infinite norm; as we will see, the
command dirtyinfnorm does this for you.

3 General principles

The first goal of Sollya is to help people to use numerical functions and numerical algorithms in a safe
way. It is first designed to be used interactively but it can also be used in script&ﬂ

One of the originalities of Sollya is to work with multi-precision arithmetic (it uses the MPFR library).
For safety purposes, Sollya knows how to use interval arithmetic. It uses the interval arithmetic to
produce tight and safe results with the precision required by the user.

The general philosophy of Sollya is: When you can make a computation exactly and sufficiently
quickly, do it; when you cannot, do not, unless you have been explicitly asked for.

The precision of the tools is set by the global variable prec. It indicates the number of bits used to
represent the constants in Sollya. In general, the variable prec determines the precision of the outputs
of commands: more precisely, the command will internally determine what precision should be used
during the computations in order to ensure that the output is a faithful result with prec bits.

For decidability and efficiency reasons, this general principle cannot be applied every time, so be
careful. Moreover certain commands are known to be unsafe: they give in general excellent results and
give almost prec correct bits in output for everyday examples. However they are just heuristic and
should not be used when the result must be safe. See the documentation of each command to know
precisely how confident you can be with its result.

A second principle (that comes together with the first one) is: When a computation leads to inexact
results, inform the user with a warning. This can be quite irritating in some circumstances: in particular
if you are using Sollya within other scripts. The global variable verbosity lets you change the level of
verbosity of Sollya. When set to 0, Sollya becomes completely silent on stdout and prints only very
important messages on stderr. Increase verbosity if you want more informations about what Sollya
is doing. Note that when you affect a value to a global variable, a message is always printed even if
verbosity is set to 0. In order to silently affect a global variable, use !:

> prec=30;

The precision has been set to 30 bits.
> prec=30!;

>

For conviviality reasons, values are displayed in decimal by default. This lets a normal human being
understand the numbers he or she manipulates. But since constants are internally represented in binary,
this causes permanent conversions that are sources of roundings. Thus you are loosing in accuracy and
Sollya is always complaining about inexact results. If you just want to store or communicate your
results (to another tools for instance) you can use bit-exact representations available in Sollya. The
global variable display defines the way constants are displayed. Here is an example of the five available
modes:

IRemark: some of the behaviors of Sollya slightly change when used in scripts. For example, no prompt is printed.

> prec=30!;

> a = 17.25;

> display=decimal;

Display mode is decimal numbers.
> a;

0.1725e2

> display=binary;

Display mode is binary numbers.
> a;

1.0001012 * 27(4)

> display=powers;

Display mode is dyadic numbers in integer-power-of-2 notation.
> a;

69 * 27(-2)

> display=dyadic;

Display mode is dyadic numbers.
> a;

69b-2

> display=hexadecimal;

Display mode is hexadecimal numbers.
> a;

0x1.14p4

>

As always, the symbol e means x107. The same way the symbol b means x2=. The symbol p
means x 16" and is used only with the 0x prefix. The prefix 0x indicates that the digits of the following
number until a symbol p or whitespace are hexadecimal. The suffix _2 indicates to Sollya that the
previous number has been written in binary. Sollya can parse these notations even if you are not in the
corresponding display mode, so you can always use them.

You can also use memory-dump hexadecimal notation frequently used to represent IEEE 754 double
and single precision numbers. Since this notation does not allow for exactly representing numbers
with arbitrary precision, there is no corresponding display mode. However, the commands printhexa
respectively printfloat round the value to the nearest double respectively single. The number is then
printed in hexadecimal as the integer number corresponding to the memory representation of the IEEE
754 double or single number:

> printhexa(a);
0x4031400000000000
> printfloat(a);
0x418a0000

Sollya can parse these memory-dump hexadecimal notation back in any display mode.

4 Variables

As already explained, Sollya can manipulate univariate functional expressions. These expressions con-
tain a unique free variable the name of which is fixed by its first usage in an expression that is not a
left-hand-side of an assignment. This global and unique free variable is a variable in the mathematical
sense of the term.

Sollya also provides variables in the sense programming languages give to the term. These variables,
that must be different in their name from the global free variable, may be global or declared and attached
to a block of statements, i.e. a begin-end-block. These programming language variables may hold any
object of the Sollya language, as for example functional expressions, strings, intervals, constant values,
procedures, external functions and procedures, etc.

Global variables need not to be declared. They start existing, i.e. can be correctly used in expressions
that are not left-hand-sides of assignments, when they are assigned a value in an assignment. Since they

are global, this kind of variables is recommended only for small Sollya scripts. Larger scripts with code
reutilization should use declared variables in order to avoid name clashes for example in loop variables.

Declared variables are attached to a begin-end-block. The block structure builds scopes for declared
variables. Declared variables in inner scopes shadow variables (global and declared) of outer scopes.
The global free variable, i.e. the mathematical variable for univariate functional expressions, cannot
be shadowed. Variables are declared using var keyword. See section for details on its usage and
semantic.

The following code examples illustrate the usage of variables.

> f = exp(x);

> £,

exp(x)

> a = "Hello world";

> a;

Hello world

> Db =05;

> £f(b);

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.

0.148413159102576603421115580040552279623487667593878e3

> {var b; b = 4; £(b); };

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.

0.545981500331442390781102612028608784027907370386137e2

> {var x; x = 3; };

Warning: the identifier "x" is already bound to the current free variable.

It cannot be declared as a local variable. The declaration of "x" will have no
effect.

Warning: the identifier "x" is already bound to the free variable, to a library
function or to an external procedure.

The command will have no effect.

Warning: the last assignment will have no effect.

{var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };

1

true

5

3

> a;

Hello world

5 Data types

Sollya has a (very) basic system of types. If you try to perform an illicit operation (such as adding a
number and a string, for instance), you will get a type error. Let us see the available data types.

5.1 Booleans

There are two special values true and false. Boolean expressions can be constructed using the boolean

connectors && (and), || (or), ! (not), and comparisons.
The comparison operators <, <=, > and >= can only be used between two numbers or constant
expressions.

The comparison operators == and != are polymorphic. You can use it to compare any two objects,
like two strings, two intervals, etc. Note that testing the equality between two functions will return true
if and only if the expression trees representing the two functions are exactly the same. See for an
exception concerning the special object error. Example:

> 1+x==1+x;
true
> 1+x==x+1;
false

5.2 Numbers

As seen above, Sollya represents numbers as floating-point values with the current precision prec. A
number in an expression is rounded to the precision prec when the expression gets evaluated:

> prec=12!;

> 4097;

Warning: Rounding occured when converting the constant "4097" to floating-point
with 12 bits.

If safe computation is needed, try to increase the precision.

4096

> 4098;

4098

> 4097+1;

Warning: Rounding occured when converting the constant "4097" to floating-point
with 12 bits.

If safe computation is needed, try to increase the precision.

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.

4096

Note that each variable has its own precision that corresponds to the value of prec when the variable
was set. Thus you can work with variables having a precision bigger than the current precision.

The same way, if you define a function that refers to some constant, this constant is stored in the
function with the current precision and will keep this value in the future, even if prec becomes smaller.

If you define a function that refers to some variable, the precision of the variable is kept, independently
of the current precision:

> prec=50!;

> a = 4097;

> prec=12!;

> f = x+a;

> g = x+4097;

Warning: Rounding occured when converting the constant "4097" to floating-point
with 12 bits.

If safe computation is needed, try to increase the precision.
> prec=50!;

> £,

4097 + x

> g;

4096 + x

5.3 Intervals

Intervals are composed of two numbers or constant expressions representing the lower and the upper
bound. These values are separated either by commas or semi-colons:

> d=[1;2];

> d2=[1,1+1];
> d==d2;

true

10

If bounds are defined by constant expressions, these are evaluated to floating-point numbers using the
current precision. Numbers or variables containing numbers keep their precision for the interval bounds.
Interval bound evaluation is performed in a way that ensures the inclusion property: all points in the
original, unevaluated interval will be contained in the interval with its bounds evaluated to floating-point
numbers. Remark that evaluation bounds defined by constant expressions includes 7:

prec=30!;

a=4097;

prec=121!;

d=[4096; al;

prec=30!;

d;

[4096;4097]

> [-pi;pil;
[-0.31415926591e1;0.31415926591e1]

V V.V V Vv VvV

You can get the upper-bound (respectively the lower-bound)) of an interval with the function sup
(respectively inf). The middle of the interval is got with the function mid. Note that these functions
can also be used on numbers (in that case, the number is interpreted as an interval containing only one
single point. Thus the functions inf, mid and sup are just the identity):

d=[1;3];
inf(d);

mid(d);

sup(4) ;

S VNNV e VYV

5.4 Functions

Sollya knows only functions with one single variable. The first time in a session that an unbound name
is used (without being assigned) it determines the name used to refer to the free variable.
The basic functions available in Sollya are the following:

o+ - % / ~

® sqgrt

e abs

e sin, cos, tan, sinh, cosh, tanh

® asin, acos, atan, asinh, atanh

e exp, expml (defined as expml(z) = exp(z) — 1)

e log (neperian logarithm), log2 (binary logarithm), 1og10 (decimal logarithm), loglp (defined as
loglp(z) = log(1 + x))

e erf, erfc

The constant 7 is available through the keyword pi as a 0-ary function: its behavior is exactly the
same as if it were a constant with an infinite precision:

11

> display=binary!;

> prec=12!;

> a=pi;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.

1.10010010001_2 * 27(1)

> prec=30!;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of
the true result.

1.10010010000111111011010101001_2 * 27 (1)

5.5 Strings

Anything written between quotes is interpreted as a string. The infix operator @ concatenates two strings.
To get the length of a string, use the length function. You can access the i-th character of a string using
brackets (see the example below). There is no character type in Sollya: the i-th character of a string is
returned as a string itself.

> s1 = "Hello "; s2 = "World!";
> s = s1@s2;

> length(s);

12

> s[0];

H

> s[11];
!

Strings may contain the following escape sequences: \\, \", \?, \", \n, \t, \a, \b, \f, \z, \v,
\x[hexadecimal number] and \[octal number]. Refer to the C99 standard for their meaning.

5.6 Particular values

Sollya knows some particular values. These values do not really have a type but they can be stored in
variables and in lists. A (possibly not exhaustive) list of such values is the following:

e on, off (see sections and [8.91)

e dyadic, powers, binary, decimal, hexadecimal (see sections |8.39} [8.103] [8.15] [8.25| and |8.62))

e file, postscript, postscriptfile (see sections|8.53][8.100| and [8.101])

e RU, RD, RN, RZ (see sections [8.130} [8.117} |8.126| and [8.131))

e absolute, relative (see sections|8.2] and [8.120))

e double, doubleextended, doubledouble, tripledouble (see sections [8.36] [8.38] [8.37] and [8.149))

e D, DE, DD, TD (see sections [8.36] [8.38] [8.37] and [8.149)

e perturb (see section [3.95))

e honorcoeffprec (see section [8.63))

e default (see section [3.26]
e error (see section [8.43))

e void (see section [8.153))

12

5.7 Lists

Objects can be grouped into lists. A list can contain elements with different types. As for strings, you
can concatenate two lists with @. The function length gives also the length of a list.

You can prepend an element to a list using .: (in @(1)) and you can append an element to a list
using :. (in O(n)). The following example illustrates some features:

> 1= [| "foo" [];

>1=1:.1;

> 1 = "bar".:1;

> 1;

[l"pbar", "foo", 11]

> 1[1];

foo

> 1@1;

[I"bar", "foo", 1, "bar", "foo", 1l]

Lists can be considered as arrays and elements of lists can be referenced using brackets. Possible
indices start at 0. The following example illustrates this point:

>1-=1[[1,2,3,4,5|];
> 1;

[It, 2, 3, 4, 51]

> 1[3];

4

Remark that the complexity for accessing an element of the list using indices is O(n).

Lists may contain ellipses indicated by , ..., between elements that are constant and evaluate to
integers that are incrementally ordered. Sollya translates such ellipses to the full list upon evaluation.
Using ellipses between elements that are not constants is not allowed. This feature is provided for ease
of programming; remark that the complexity of expanding such lists is high. For illustration, see the
following example:

> [I1,...,51];

(11, 2, 3, 4, 5]]

> [I-5,...,51];

(l-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5l]

> [13,...,11]1;

Warning: at least one of the given expressions or a subexpression is not
correctly typed

or its evaluation has failed because of some error on a side-effect.
error

> [|true,...,falsel];

Warning: at least one of the given expressions or a subexpression is not
correctly typed

or its evaluation has failed because of some error on a side-effect.
error

Lists may be continued to infinity by means of the . .. indicator after the last element given. At least
one element must explicitly be given. If the last element given is a constant expression that evaluates to
an integer, the list is considered as continued to infinity by all integers greater than that last element.
If the last element is another object, the list is considered as continued to infinity by re-duplicating this
last element. Remark that bracket notation is supported for such end-elliptic lists even for implicitly
given elements. However, evaluation complexity is high. Combinations of ellipses inside a list and in its
end are possible. The usage of lists described here is best illustrated by the following examples:

13

>1=[|1,2,true,3...11;
> 1;

[11, 2, true, 3...1]

> 1[2];

1[4];

vV iV WV

1[1200];

1200
>1=[|1,...,5,true...|];
> 1;

[11, 2, 3, 4, 5, true...|]
> 1[1200];

true

6 Iterative language elements: assignments, conditional state-
ments and loops

6.1 Blocks

Statements in Sollya can be regrouped in blocks, so-called begin-end-blocks. This can be done using
the keywords begin and end or their shorter variants { and }. Blocks declared this way are considered as
one single statement. As already explained in section [4], using begin-end-blocks also opens the possibility
of declaring variables through the keyword var.

6.2 Assignments

Sollya has two different assignment operators, = and :=. The assignment operator = assigns its right-
hand-object “as is”, i.e. without evaluating functional expressions. For instance, i = i + 1; will
dereferentiate the identifier i with some content, notate it y, build up the expression (function) y+ 1 and
assign this expression back to i. In the example, if i stood for the value 1000, the statement i = i +
1; will assign 1000 + 1 — and not 1001 — to i. The assignment operator := evaluates constant functional
expressions before assigning them. On other expressions it behaves like =. Still in the example, the
statement i := i + 1; really assigns 1001 to i.

Both Sollya assignment operators support indexing of lists or strings elements using brackets on the
left-hand-side of the assignment operator. The indexed element of the list or string gets replaced by the
right-hand-side of the assignment operator. When indexing strings this way, that right-hand side must
evaluate to a string of length 1. End-elliptic lists are supported with their usual semantic for this kind
of assignment. When referencing and assigning a value in the implicit part of the end-elliptic list, the
list gets expanded to the corresponding length. The indexing of lists on left-hand sides of assignments is
reduced to the first order. Multiple indexing of lists of lists is not supported for complexity reasons.

The following examples well illustrate the behavior of assignment statements:

14

> autosimplify = off;
Automatic pure tree simplification has been deactivated.

> i = 1000;
>i=1i+1;

> print(i);

1000 + 1

>i =1+ 1;

> print(i);

1002
>1=1[I1,...,5]];
> print(1);

[l1, 2, 3, 4, 5]

> 1[3] = 1[3] + 1;

> 1[4] := 1[4] + 1;

> print(1);

[11, 2, 3, 4 + 1, 6]]

> 1[5] = true;

> 1;

[11, 2, 3, 5, 6, truell]

> s = "Hello world";

> s;

Hello world

> s[1] = "a";

> s;

Hallo world

>1 = [|true,1,...,5,9...1];
> 1;

[ltrue, 1, 2, 3, 4, 5, 9...1]
> 1[13] = "Hello";

> 1;

[l|true, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, "Hello"...|]

6.3 Conditional statements

Sollya supports conditional statements expressed with the keywords if, then and optionally else.

Remark that only conditional statements are supported not conditional expressions.

The following examples illustrate both syntax and semantic of conditional statements in Sollya.
Concerning syntax, consider also section [0] and remark that there must not be any semicolon before the

else keyword.

> a = 3;
>b = 4;
> if (a == b) then print("Hello world");
> b = 3;
> if (a == b) then print("Hello world");

Hello world
> if (a == b) then print("You are telling the truth") else print("Liar!");
You are telling the truth

6.4 Loops

Sollya supports three kinds of loops. General while-condition loops can be expressed using the keywords
while and do. Remark that the condition test is executed always before the loop, there is no do-until-

condition loop. Consider the following examples for both syntax and semantic:

15

verbosity = 0!;

prec = 30!;

i 5;

while (expm1(i) > 0) do { expm1(i); i :
.14741315913e3

.53598150015e2

.19085536927e2

.63890561014el

.17182818279e1

print(i);

OV OO O OOV V VYV

The second kind of loops are loops on a variable ranging from a numerical start value and a end
value. These kind of loops can be expressed using the keywords for, from, to, do and optionally by.
The by statement indicates the width of the steps on the variable from the start value to the end value.
Once again, syntax and semantic are best explained with an example:

> for i from 1 to 5 do print ("Hello world",i);

Hello
Hello
Hello
Hello
Hello

world 1
world 2
world 3
world 4
world 5

> for
Hello
Hello
Hello

i from 2 to 1 by -0.5 do print("Hello world",i);
world 2

world 0.15el

world 1

The third kind of loops are loops on a variables ranging on values contained in a list. In order to
ensure the termination of the loop, that list must not be end-elliptic. The loop is expressed using the
keywords for, in and do as in the following examples:

> 1 [Itrue, false, 1,...
> for i in 1 do i;

true

false

1

2

3

4

Hello

exp(x)

,4, "Hello", exp(x)I];

For both types of for loops, assigning the loop variable is allowed and possible. If the loop terminates,
the loop variable will contain the value that made the loop condition fail. Consider the following examples:

for i from 1 to 5 do { if (i == 3) then i = 4 else i; };

i;

>
1
2
5
>
6

7 Functional language elements: procedures

Sollya has some elements of functional languages. In order to avoid confusion with mathematical
functions, the associated programming objects are called procedures in Sollya.

16

Sollya procedures are common objects that can be, for example, assigned to variables or stored
in lists. Procedures are declared by the proc keyword; see section for details. The returned
procedure object must then be assigned to a variable and can hence be applied to arguments with common
application syntax. The procedure keyword provides an abbreviation for declaring and assigning a
procedure; see section for details.

Sollya procedures can return objects using the return keyword at the end of the begin-end-block
of the procedure. Section gives details on the usage of return. Procedures further can take any
type of object in argument, in particular also other procedures that are then applied to arguments.
Procedures can be declared inside other procedures.

Remark that declaring a procedure does not involve any evaluation or other interpretation of the
procedure body. In particular, this means that constants are evaluated to floating-point values inside
Sollya when the procedure is applied to actual parameters and the global precision valid at this moment.

Sollya procedures are well illustrated by the following examples:

succ = proc(n) { return n + 1; };
succ(b);

6

3 + succ(0);

4

succ;

proc(n)

begin

nop;

return (n) + (1);

end

add = proc(m,n) { var res; res := m + n; return res; };
add(5,6);

11

hey = proc() { print("Hello world."); };
> hey(O);

Hello world.

print(hey());

Hello world.

void

hey;

proc()

begin

print("Hello world.");

return void;

end

fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };

fac(b);

120

fac(11);

39916800

> fac;

proc(n)

begin

var res;

if (n) == (0) then

res := 1

else

res := (n) * (fac((m) - (1)));
return res;

end

17

Sollya also supports external procedures, i.e. procedures written in C (or some other language) and
dynamically bound to Sollya identifiers. See for details.

8 Commands and functions

8.1 abs

Name: abs
the absolute value.

Description:

z x>0

e abs is the absolute value function. abs(x):{ 220

8.2 absolute

Name: absolute
indicates an absolute error for externalplot

Usage:
absolute : absolute|relative
Description:

e The use of absolute in the command externalplot indicates that during plotting in externalplot
an absolute error is to be considered.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -1
mpfr");

> externalplot("./externalplotexample",absolute,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.50)), relative (8.120), bashexecute ({8.14))

8.3 accurateinfnorm

Name: accurateinfnorm
computes a faithful rounding of the infinite norm of a function

Usage:

accurateinfnorm(function,range,constant) : (function, range, constant) — constant
accurateinfnorm(function,range,constant,exclusion range 1,...,exclusion range n) : (function, range,
constant, range, ..., range) — constant

Parameters:
e function represents the function whose infinite norm is to be computed
e range represents the infinite norm is to be considered on
e constant represents the number of bits in the significant of the result

e cxclusion range 1 through exclusion range n represent ranges to be excluded

18

Description:

e The command accurateinfnorm computes an upper bound to the infinite norm of function func-

tion in range. This upper bound is the least floating-point number greater than the value of the
infinite norm that lies in the set of dyadic floating point numbers having constant significant man-
tissa bits. This means the value accurateinfnorm evaluates to is at the time an upper bound and
a faithful rounding to constant bits of the infinite norm of function function on range range.

If given, the fourth and further arguments of the command accurateinfnorm, ezclusion range 1
through exclusion range n the infinite norm of the function function is not to be considered on.

Example 1:

>
>
0.
> accurateinfnorm(p - exp(x), [-1;1], 30);
0.
>
0.

p = remez(exp(x), 5, [-1;11);
accurateinfnorm(p - exp(x), [-1;1], 20);
45205641072243e-4

45205621802324458e-4
accurateinfnorm(p - exp(x), [-1;1], 40);
45205621769406345578e-4

Example 2:

> p = remez(exp(x), 5, [-1;11);

> midpointmode = on!;

> infnorm(p - exp(x), [-1;11);
0.4520575/7"e-4

> accurateinfnorm(p - exp(x), [-1;1], 40);
0.45205621769406345578e-4

See also: infnorm (8.68)), dirtyinfnorm (8.32)), checkinfnorm (8.19), remez (8.121), diam ({8.29)

8.4

acos

Name: acos
the arccosine function.

Description:

e acos is the inverse of the function cos: acos(y) is the unique number z € [0; 7] such that cos(x)=y.

e It is defined only for y € [—1;1].

See also: cos (8.23)

8.5

acosh

Name: acosh
the arg-hyperbolic cosine function.

Description:

e acosh is the inverse of the function cosh: acosh(y) is the unique number x € [0; +o0] such that

cosh(x)=y.

e It is defined only for y € [0; +o0].

See also: cosh ([8.24))

19

8.6 and

Name: &&

boolean AND operator

Usage:

exprl && expr2 : (boolean, boolean) — boolean
Parameters:
e cxprl and expr?2 represent boolean expressions
Description:

o && evaluates to the boolean AND of the two boolean expressions expr! and expr2. && evaluates
to true iff both expr! and expr2 evaluate to true.

Example 1:
> true && false;
false
Example 2:
> (1 == exp(0)) && (0 == log(1));
true
See also: || (8.93), !
8.7 append
Name: :.

add an element at the end of a list.

Usage:
L:.z : (list, any type) — list

Parameters:

e [is a list (possibly empty).

e 1 is an object of any type.
Description:

e :. adds the element = at the end of the list L.

e Note that since x may be of any type, it can be in particular a list.

Example 1:

> [12,3,4]1:.5;
(12, 3, 4, 51]

Example 2:

> [11,2,311:.[14,5,61];
(1L, 2, 3, [14, 5, 6[]11]

Example 3:
> [H1]:.1;
C111]

See also: .: (8.106), @ (8.21])

20

8.8 asciiplot

Name: asciiplot
plots a function in a range using ASCII characters

Usage:
asciiplot(function, range) : (function, range) — void
Parameters:
e function represents a function to be plotted
e range represents a range the function is to be plotted in
Description:

e asciiplot plots the function function in range range using ASCII characters. If Sollya is connected
to a terminal, the size of the plot is determined by the size of the terminal. If not, the plot is
of fixed size. The function is evaluated on a number of points equal to the number of columns
available. Its value is rounded to the next integer in the range of lines available. A letter "x” is
written at this place. If zero is in the hull of the image domain of the function, a x-axis is displayed.
If zero is in range, an y-axis is displayed. If the function is constant or if the range is reduced to
one point, the function is evaluated to a constant and the constant is displayed instead of a plot.

Example 1:

> asciiplot(exp(x), [1;2]);
XX
XX
XX
XX
XX
XXX
XX
XXX
XX
XXX
XXX
XXX
XXX
XXX
XXXX
XXX
XXXX
XXXX
XXXX
XXXX
XXXXX
XXXXX
XXXXX
XXX

Example 2:

21

> asciiplot(expmi(x),[-1;2]);
| X

|

|

|

|

|

|

|

|

|

| XX
|

|

|

|

| XXX
| XXX

| XXXX

| XXXX

| XXXX

| XXXXXX

XXXXXXXXXXXX |
XXXXXXXXX |

Example 3:

> asciiplot(5, [-1;1]);
5

Example 4:

> asciiplot(exp(x), [1;1]);
0.271828182845904523536028747135266249775724709369998e1

See also: plot (8.97)

8.9 asin

Name: asin
the arcsine function.

Description:

e asin is the inverse of the function sin: asin(y) is the unique number « € [—7/2;7/2] such that
sin(x)=y.

e It is defined only for y € [—1;1].

See also: sin (8.135))

8.10 asinh

Name: asinh
the arg-hyperbolic sine function.

Description:

22

e asinh is the inverse of the function sinh: asinh(y) is the unique number x € [—o0; +00] such that
sinh(x)=y.

e It is defined for every real number y.

See also: sinh ([8.136))

8.11 atan

Name: atan
the arctangent function.

Description:

e atan is the inverse of the function tan: atan(y) is the unique number x € [—7/2; +7/2] such that
tan(x)=y.

e It is defined for every real number y.

See also: tan (|8.144))

8.12 atanh

Name: atanh
the hyperbolic arctangent function.

Description:

e atanh is the inverse of the function tanh: atanh(y) is the unique number z € [—o0; +00] such
that tanh(x)=y.

e It is defined only for y € [—1;1].

See also: tanh (8.145))

8.13 autosimplify

Name: autosimplify
activates, deactivates or inspects the value of the automatic simplification state variable

Usage:
autosimplify = activation value : on|off — void
autosimplify = activation value ! : on|off — void
autosimplify = ? : void — on|off
Parameters:

e activation value represents on or off, i.e. activation or deactivation
Description:

e An assignment autosimplify = activation value, where activation value is one of on or off, acti-
vates respectively deactivates the automatic safe simplification of expressions of functions generated
by the evaluation of commands or in argument of other commands.

Sollya commands like remez, taylor or rationalapprox sometimes produce expressions that
can be simplified. Constant subexpressions can be evaluated to dyadic floating-point numbers,
monomials with coefficients 0 can be eliminated. Further, expressions indicated by the user perform
better in many commands when simplified before being passed in argument to a commans. When
the automatic simplification of expressions is activated, Sollya automatically performs a safe (not
value changing) simplification process on such expression.

23

The automatic generation of subexpressions can be annoying, in particular if it takes too much
time for not enough usage. Further the user might want to inspect the structure of the expression
tree returned by a command. In this case, the automatic simplification should be deactivated.

If the assignment autosimplify = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

e The expression autosimplify = 7 evaluates to a variable of type on|off, indicating whether or not
the automatic simplifications of expressions of functions is activated.

Example 1:
> autosimplify = on !;
> print(x - x);
0
> autosimplify = off ;

Automatic pure tree simplification has been deactivated.
> print(x - x);
X - X

Example 2:

> autosimplify = on !;

> print(rationalapprox(sin(pi/5.9),7));
0.5

> autosimplify = off !;

> print(rationalapprox(sin(pi/5.9),7));
1/ 2

Example 3:

> autosimplify = 7;
on

See also: print (8.107)), prec (8.104), points (8.99), diam (8.29)), display (8.34), verbosity (8.152]),

canonical (8.17)), taylorrecursions (8.147), timing (8.148)), fullparentheses (8.56)), midpointmode
(8.84)), hopitalrecursions (8.64)), remez (8.121f), rationalapprox (8.116)), taylor (8.146])

8.14 bashexecute

Name: bashexecute
executes a shell command.

Usage:
bashexecute(command) : string — void
Parameters:
e command is a command to be interpreted by the shell.
Description:

e bashexecute(command) lets the shell interpret command. It is useful to execute some external
code within Sollya.

e bashexecute does not return anything. It just executes its argument. However, if command
produces an output in a file, this result can be imported in Sollya with help of commands like
execute, readfile and parse.

24

Example 1:

> bashexecute("ls /");
bin

boot

cdrom

dev

emul

etc

home
initrd
initrd.img
1lib

1ib32
1ib64
lost+found
media

mnt

opt

proc

root

sbin

srv

sys

tmp

usr

var
vmlinuz

See also: execute ({8.45)), readfile (8.118]), parse (8.94)

8.15 binary

Name: hexadecimal
special value for global state display
Description:

e hexadecimal is a special value used for the global state display. If the global state display is
equal to hexadecimal, all data will be output in binary notation.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.25)), dyadic (8.39)), powers (8.103)), hexadecimal ({8.62)

8.16 boolean

Name: boolean
keyword representing a boolean type
Usage:
boolean : type type
Description:

e boolean represents the boolean type for declarations of external procedures by means of exter-
nalproc.

Remark that in contrast to other indicators, type indicators like boolean cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

25

See also: externalproc (8.51)), constant (8.22), function (8.57)), integer (8.69)), list of (8.76)), range
(8115), string (8.139)

8.17

canonical

Name: canonical
brings all polynomial subexpressions of an expression to canonical form or activates, deactivates or checks
canonical form printing

Usage:
canonical(function) : function — function
canonical = activation value : on|off — void
canonical = activation value ! : on|off — void
canonical = ? : void — on|off
Parameters:

e function represents the expression to be rewritten in canonical form

activation value represents on or off, i.e. activation or deactivation

Description:

The command canonical rewrites the expression representing the function function in a way such
that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written
in canonical form, i.e. as a sum of monomials in the canonical base. The canonical base is the
base of the integer powers of the global free variable. The command canonical does not endanger
the safety of computations even in Sollya’s floating-point environment: the function returned is
mathematically equal to the function function.

An assignment canonical = activation value, where activation value is one of on or off, activates
respectively deactivates the automatic printing of polynomial expressions in canonical form, i.e. as
a sum of monomials in the canonical base. If automatic printing in canonical form is deactivated,
automatic printing yield to displaying polynomial subexpressions in Horner form.

If the assignment canonical = activation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

The expression canonical = ? evaluates to a variable of type on|off, indicating whether or not
the automatic printing of subexpressions in canonical form is activated. If automatic printing in
canonical form is deactivated, automatic printing yield to displaying polynomial subexpressions in
Horner form.

Example 1:

>
>
1

print(canonical(l + x * (x + 3 * x72));
print(canonical((x + 1)77));
+ 7 % x+21 *x x72 + 35 x x°3 + 35 x x4+ 21 x xb+7 x x°6 +x°7

Example 2:

>

0

exp(l + 5 x x + 10 * x"2 + 10 * x"3 + 5 * x"4 + x°5) - log(asin(16 + 80 * x + 16

print(canonical(exp((x + 1)75) - log(asin(((x + 2) + x)74 * (x + 1)) + x)));

* x72 + 160 * x°3 + 80 * x°4 + 16 * x°5) + x)

Example 3:

26

> canonical = 7;
off
> (x + 2)79;

(144 + x * (18 + x))))))))

> canonical = on;
Canonical automatic printing output has been activated.
> (x + 2)79;

144 % x°7 + 18 * x"8 + x79
> canonical = 7;
on
> canonical = off!;
> (x + 2)79;

(144 + x * (18 + x)NN))

512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *

512 + 2304 * x + 4608 * x"2 + B376 * x"3 + 4032 * x"4 + 2016 * x"5 + 672 * x"6 +

512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *

See also: horner (8.65)), print (8.107)

8.18 celil

Name: ceil
the usual function ceil.

Description:
e ceil is defined as usual: ceil(x) is the smallest integer y such that y > x.

e It is defined for every real number x.

See also: floor (8.55))

8.19 checkinfnorm

Name: checkinfnorm
checks whether the infinite norm of a function is bounded by a value

Usage:
checkinfnorm(function,range,constant) : (function, range, constant) — boolean
Parameters:
e function represents the function whose infinite norm is to be checked
e range represents the infinite norm is to be considered on
e constant represents the upper bound the infinite norm is to be checked to

Description:

e The command checkinfnorm checks whether the infinite norm of the given function function in

the range range can be proven (by Sollya) to be less than the given bound bound. This means,
if checkinfnorm evaluates to true, the infinite norm has been proven (by Sollya’s interval arith-
metic) to be less than the bound. If checkinfnorm evaluates to false, there are two possibilities:
either the bound is less than or equal to the infinite norm of the function or the bound is greater
than the infinite norm but Sollya could not conclude using its internal interval arithmetic.

checkinfnorm is sensitive to the global variable diam. The smaller diam, the more time Sollya
will spend on the evaluation of checkinfnorm in order to prove the bound before returning false

27

although the infinite is bounded by the bound. If diam is equal to 0, Sollya will eventually spend
infinite time on instances where the given bound bound is less or equal to the infinite norm of the
function function in range range. In contrast, with diam being zero, checkinfnorm evaluates to

true iff the infinite norm of the function in the range is bounded by the given bound.

Example 1:

> checkinfnorm(sin(x),[0;1.75], 1);

true

> checkinfnorm(sin(x),[0;1.75], 1/2); checkinfnorm(sin(x),[0;20/39],
false

> 1/2);

true

Example 2:

> p = remez(exp(x), 5, [-1;1]);

> b = dirtyinfnorm(p - exp(x), [-1;11);
> checkinfnorm(p - exp(x), [-1;11, b);
false

> bl = round(b, 20, RU);

> checkinfnorm(p - exp(x), [-1;1], bl);
true

> b2 = round(b, 25, RU);

> checkinfnorm(p - exp(x), [-1;1], b2);
false

> diam = 1b-20!;

> checkinfnorm(p - exp(x), [-1;1], b2);
true

See also: infnorm (8.68)), dirtyinfnorm (8.32), accurateinfnorm (8.3), remez (8.121)), diam (8.29)

8.20 coeff

Name: coeff
gives the coefficient of degree n of a polynomial

Usage:
coeff(f,n) : (function, integer) — constant

Parameters:

e f is a function (usually a polynomial).

e 7 is an integer
Description:

e If f is a polynomial, coeff(f, n) returns the coefficient of degree n in f.

e If f is a function that is not a polynomial, coeff(f, n) returns 0.

Example 1:

> coeff ((1+x)°5,3);
10

Example 2:

> coeff(sin(x),0);
0

See also: degree (8.27)

28

8.21 concat
Name: @
concatenates two lists or strings.
Usage:
Li@L2

stringl Qstring2 :

Parameters:

e L1 and L2 are two lists.

e stringl and string2 are two strings.
Description:

e @ concatenates two lists or strings.

Example 1:

: (list, list) — list
(string, string) — string

> [I1,...,31]1e[l17,8,91];
(11, 2, 3, 7, 8, 91l

Example 2:

> "Hello "@"World!";
Hello World!

See also: .: (8.106), :. (8.7)

8.22 constant

Name: constant
keyword representing a constant type

Usage:

constant : type type

Description:

e constant represents the constant type for declarations of external procedures by means of exter-

nalproc.

Remark that in contrast to other indicators, type indicators like constant cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.51]), boolean (8.16)), function (8.57)), integer (8.69), list of (8.76]), range

(B.115), string (8.139)

8.23 cos

Name: cos
the cosine function.

Description:
e cos is the usual cosine function.

e It is defined for every real number x.

See also: acos (8.4, sin (8.135)), tan (8.144)

29

8.24 cosh

Name: cosh
the hyperbolic cosine function.

Description:
e“+e *

e cosh is the usual hyperbolic function: cosh(z) = <3

e It is defined for every real number x.

See also: acosh ({8.5), sinh (8.136), tanh (8.145)), exp (8.46)

8.25 decimal

Name: decimal
special value for global state display

Description:

e decimal is a special value used for the global state display. If the global state display is equal
to decimal, all data will be output in decimal notation.

As any value it can be affected to a variable and stored in lists.

See also: dyadic (8.39)), powers (8.103), hexadecimal (8.62)), binary (8.15)

8.26 default

Name: default
default value for some commands.

Description:

e default is a special value and is replaced by something depending on the context where it is used.
It can often be used as a joker, when you want to specify one of the optional parameters of a
command and not the others: set the value of uninterresting parameters to default.

e Global variables can be reset by affecting them the special value default.

Example 1:

> p = remez(exp(x),5,[0;1],default,le-5);
> q = remez(exp(x),5,[0;1],1,1e-5);

> p==q;
true

Example 2:

> prec=7;

165

> prec=200;

The precision has been set to 200 bits.
> prec=default;

The precision has been set to 165 bits.

30

8.27 degree

Name: degree
gives the degree of a polynomial.

Usage:
degree(f) : function — integer
Parameters:
e f is a function (usually a polynomial).
Description:
e If f is a polynomial, degree(f) returns the degree of f.
e Contrary to the usage, Sollya considers that the degree of the null polynomial is 0.
e If f is a function that is not a polynomial, degree(f) returns -1.

Example 1:

> degree((1+x)*(2+5%x72));
3

> degree(0);

0

Example 2:

> degree(sin(x));
-1

See also: coeff (8.20)

8.28 denominator

Name: denominator
gives the denominator of an expression

Usage:
denominator(ezpr) : function — function
Parameters:
e cxpr represents an expression
Description:

o If expr represents a fraction expr!/ezpr2, denominator(ezpr) returns the denominator of this
fraction, i.e. expr2.
If expr represents something else, denominator(ezpr) returns 1.

Note that for all expressions expr, numerator(ezpr) / denominator(ezpr) is equal to ezxpr.

Example 1:

> denominator(5/3);
3

Example 2:

31

> denominator (exp(x));
1

Example 3:

= 5/3;
numerator (a)/denominator(a);
rint(a);
3
rint(b);
3

o1V OV VvV VvV
N'T N'T O W

Example 4:

> a = exp(x/3);

> b = numerator(a)/denominator(a);
> print(a);

exp(x / 3)

> print(b);

exp(x / 3)

See also: numerator (8.90))

8.29 diam

Name: diam
parameter used in safe algorithms of Sollya and controlling the maximal length of the involved intervals.

Description:

e diam is a global variable. Its value represents the maximal length allowed for intervals involved in
safe algorithms of Sollya (namely infnorm, checkinfnorm, accurateinfnorm, integral, find-
Zeros).

e More precisely, diam is relative to the diameter of the input interval of the command. For instance,
suppose that diam=1e-5: if infnorm is called on interval [0, 1], the maximal length of an interval
will be 1le-5. But if it is called on interval [0, le—3], the maximal length will be le-8.

See also: infnorm (8.68)), checkinfnorm (8.19), accurateinfnorm (8.3), integral (8.70)), findzeros
’54)

8.30 diff

Name: diff
differentiation operator

Usage:
diff (function) : function — function
Parameters:
e function represents a function
Description:

o diff (function) returns the symbolic derivative of the function function by the global free variable.

If function represents a function symbol that is externally bound to some code by library, the
derivative is performed as a symbolic annotation to the returned expression tree.

32

Example 1:

> diff (sin(x));
cos(x)

Example 2:

> diff (x);
1

Example 3:

> diff (x7x);
x"x * (1 + log(x))

See also: library (8.75)

8.31 dirtyfindzeros
Name: dirtyfindzeros
gives a list of numerical values listing the zeros of a function on an interval.
Usage:
dirtyfindzeros(f,I) : (function, range) — list

Parameters:

e f is a function.

e] is an interval.
Description:

e dirtyfindzeros(f,/) returns a list containing some zeros of f in the interval I. The values in the
list are numerical approximation of the exact zeros. The precision of these approximations is
approximately the precision stored in prec. If f does not have two zeros very close to each other,
it can be expected that all zeros are listed. However, some zeros may be forgotten. This command
should be considered as a numerical algorithm and should not be used if safety is critical.

e More precisely, the algorithm relies on global variables prec and points and is the following: let
n be the value of variable points and ¢ be the value of variable prec.

— Evaluate | f| at n evenly distributed points in the interval I. the precision used is automatically
chosen in order to ensure that the sign is correct.

— Whenever f changes its sign for two consecutive points, find an approximation x of its zero
with precision ¢ using Newton’s algorithm. The number of steps in Newton’s iteration depends
on t: the precision of the approximation is supposed to be doubled at each step.

— Add this value to the list.

Example 1:

> dirtyfindzeros(sin(x), [-5;5]);
[1-0.31415926535897932384626433832795028841971693993750801el1, 0, 0.3141592653589
7932384626433832795028841971693993750801e1 |]

Example 2:

33

Li=dirtyfindzeros(x"2*sin(1/x), [0;1]);
points=1000!;
L2=dirtyfindzeros(x~2*sin(1/x),[0;1]);
length(L1); length(L2);

18

25

See also: prec (8.104), points (8.99), findzeros (8.54)

8.32 dirtyinfnorm

Name: dirtyinfnorm
computes a numerical approximation of the infinite norm of a function on an interval.

Usage:
dirtyinfnorm(f,7) : (function, range) — constant
Parameters:
e f is a function.
e [is an interval.
Description:

e dirtyinfnorm(f,/) computes an approximation of the infinite norm of the given function f on the
interval I, e.g. max,cr{|f(z)|}.

e The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyinfnorm
is NaN.

e The result of this command depends on the global variables prec and points. Therefore, the
returned result is generally a good approximation of the exact infinite norm, with precision prec.
However, the result is generally underestimated and should not be used when safety is critical. Use
infnorm instead.

e The following algorithm is used: let n be the value of variable points and ¢ be the value of variable
prec.

— Evaluate |f| at n evenly distributed points in the interval I. The evaluation are faithful
roundings of the exact results at precision t¢.

— Whenever the derivative of f changes its sign for two consecutive points, find an approximation
x of its zero with precision ¢. Then compute a faithful rounding of | f(x)| at precision t.

— Return the maximum of all computed values.

Example 1:

> dirtyinfnorm(sin(x), [-10;10]1);
1

Example 2:

34

OVVOYVVOVYV OVvyVv

.145855712891e1l

.145852853713568622797e1

.1458528537136237644438147455024510015e1

.14585285371362376444381474550238417182992140879936823740941534981883e1

prec=15!;
dirtyinfnorm(exp(cos(x))*sin(x), [0;5]);

prec=40!;
dirtyinfnorm(exp(cos(x))*sin(x), [0;5]);

prec=100!;
dirtyinfnorm(exp(cos(x))*sin(x), [0;5]);

prec=200!;
dirtyinfnorm(exp(cos(x))*sin(x), [0;5]);

Example 3:

>

@NaN@

dirtyinfnorm(x~2, [log(0);log(1)1);

See also: prec (8.104), points (8.99), infnorm (8.68), checkinfnorm (8.19)

8.33 dirtyintegral

Name: dirtyintegral
computes a numerical approximation of the integral of a function on an interval.

Usage:

dirtyintegral(f,7) : (function, range) — constant

Parameters:

e f is a function.

I is an interval.

Description:

dirtyintegral(f,/) computes an approximation of the integral of f on I

The interval must be bound. If the interval contains one of -Inf or +Inf, the result of dirtyintegral
is NaN, even if the integral has a meaning.

The result of this command depends on the global variables prec and points. The method used
is the trapezium rule applied at n evenly distributed points in the interval, where n is the value of
global variable points.

This command computes a numerical approximation of the exact value of the integral. It should
not be used if safety is critical. In this case, use command integral instead.

Warning: this command is known to be currently unsatisfactory. If you really need to compute
integrals, think of using an other tool or report a feature request to sylvain.chevillard@ens-lyon.fr.

Example 1:

>

>

>
>

-0.544021110889369813404747661851377281683643012916219

-0.544003049051526298224480588824753820365362983562818375241

-0.544019977511583219722226973125831990359958379268927638295

sin(10);
dirtyintegral(cos(x), [0;10]);

points=2000"!;
dirtyintegral(cos(x), [0;10]);

See also: prec (8.104), points (8.99)), integral (8.70))

35

8.34 display

Name: display
sets or inspects the global variable specifying number notation

Usage:
display = notation value : decimal|binary|dyadic|powers|hexadecimal — void
display = notation value ! : decimal|binary|dyadic|powers|hexadecimal — void
display = 7 : void — decimal|binary|dyadic|powers|hexadecimal
Parameters:

e notation value represents a variable of type decimal|binary|dyadic|powers|hexadecimal
Description:

e An assignment display = notation value, where notation value is one of decimal, dyadic, powers,
binary or hexadecimal, activates the corresponding notation for output of values in print, write
or at the Sollya prompt.

If the global notation variable display is decimal, all numbers will be output in scientific decimal
notation. If the global notation variable display is dyadic, all numbers will be output as dyadic
numbers with Gappa notation. If the global notation variable display is powers, all numbers
will be output as dyadic numbers with a notation compatible with Maple and PARI/GP. If the
global notation variable display is binary, all numbers will be output in binary notation. If the
global notation variable display is hexadecimal, all numbers will be output in C99/ IEEE754R
notation. All output notations can be reparsed by Sollya, inducing no error if the input and output
precisions are the same (see prec).

If the assignment display = notation value is followed by an exclamation mark, no message
indicating the new state is displayed. Otherwise the user is informed of the new state of the global
mode by an indication.

e The expression display = ? evaluates to a variable of type decimal|binary|dyadic|powers|hexadecimal,
indicating the current notation used.

Example 1:

> display = decimal;

Display mode is decimal numbers.

> a = evaluate(sin(pi * x), 0.25);

> a;
0.707106781186547524400844362104849039284835937688470740971063
> display = binary;

Display mode is binary numbers.

> a;
1.011010100000100111100110011001111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 27(-1)

> display = hexadecimal;

Display mode is hexadecimal numbers.

> a;

0xb.504£333f9de6484597d89b3754abe9f1d6£60ba88p-4

> display = dyadic;

Display mode is dyadic numbers.

> a;

33070006991101558613323983488220944360067107133265b-165

> display = powers;

Display mode is dyadic numbers in integer-power-of-2 notation.
> a;

33070006991101558613323983488220944360067107133265 * 27 (-165)

36

See also: print (8.107)), write (8.155), decimal (8.25)), dyadic (8.39)), powers (8.103), binary (8.15]),
hexadecimal (8.62), prec (8.104))

8.35 divide

Name: /
division function

Usage:
functionl / function2 : (function, function) — function
Parameters:
e functionl and function? represent functions
Description:

e / represents the division (function) on reals. The expression function! / function2 stands for the
function composed of the division function and the two functions function! and function2, where
functionl is the numerator and function?2 the denominator.

Example 1:

>5/ 2;
0.2bel

Example 2:

>x / 2;
x * 0.5

Example 3:

>x / x5
1

Example 4:

>3/ 0;
QInf@

Example 5:

> diff(sin(x) / exp(x));
(exp(x) * cos(x) - sin(x) * exp(x)) / exp(x)~2

See also: + (8.98)), — (8.85)), = (8.86]), ~ (8.102)

8.36 double

Names: double, D
rounding to the nearest IEEE double.

Description:
e double is both a function and a constant.

e As a function, it rounds its argument to the nearest double precision number. Subnormal numbers
are supported as well as standard numbers: it is the real rounding described in the standard.

37

e As a constant, it symbolizes the double precision format. It is used in contexts when a precision
format is necessary, e.g. in the commands roundcoefficients and implementpoly. See the
corresponding help pages for examples.

Example 1:

> display=binary!;

> D(0.1);
1.100110011001100110011001100110011001100110011001101_2 * 2~ (-4)
> D(4.17);
1.000010101110000101000111101011100001010001111010111_2 * 27(2)
> D(1.011_2 * 2°(-1073));

1.1.2 x 27(-1073)

See also: doubleextended (8.38)), doubledouble (8.37), tripledouble (8.149), roundcoefficients
(18.128]), implementpoly (8.66)
8.37 doubledouble

Names: doubledouble, DD
represents a number as the sum of two IEEE doubles.

Description:
e doubledouble is both a function and a constant.

e As a function, it rounds its argument to the nearest number that can be written as the sum of two
double precision numbers.

e The algorithm used to compute doubledouble(x) is the following: let xh = double(x) and let x1
= double(x-xh). Return the number xh+xl. Note that if the current precision is not sufficient to
represent exactly xh+xl, a rounding will occur and the result of doubledouble(x) will be useless.

e As a constant, it symbolizes the double-double precision format. It is used in contexts when a
precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See
the corresponding help pages for examples.

Example 1:

> verbosity=1!;

> a = 1+ 27(-100);

> DD(a);

0.100000000000000000000000000000078886090522101180541173e1

> prec=50!;

> DD(a);

Warning: double rounding occurred on invoking the double-double rounding operato
r.

Try to increase the working precision.

1

See also: double (8.36), doubleextended (8.38), tripledouble (8.149), roundcoefficients (8.128)),
implementpoly (8.60)

8.38 doubleextended

Names: doubleextended, DE
computes the nearest number with 64 bits of mantissa.

Description:

38

e doubleextended is a function that computes the nearest floating-point number with 64 bits of
mantissa to a given number. Since it is a function, it can be composed with other functions of
Sollya such as exp, sin, etc.

e It does not handle subnormal numbers. The range of possible exponents is the range used for all
numbers represented in Sollya (e.g. basically the range used in the library MPFR).

e Since it is a function and not a command, its behavior is a bit different from the behavior of
round(x,64,RN) even if the result is exactly the same. round(x,64,RN) is immediately evaluated
whereas doubleextended(x) can be composed with other functions (and thus be plotted and so
on).

e Be aware that doubleextended cannot be used as a constant to represent a format in the com-
mands roundcoefficients and implementpoly (contrary to D, DD,and TD).

Example 1:

> display=binary!;

> DE(0.1);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 27 (-4)
> round(0.1,64,RN);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 27 (-4)

Example 2:

> D(27(-2000));

0

> DE(2"(-2000));
0.870980981621721667557619549477887229585910374270538862e-602

Example 3:

> verbosity=1!;

> f = sin(DE(x));

> f(pi);

Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.

-0.501655761266833202355732708033075701383156167025495e-19

> g = sin(round(x,64,RN));

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.

See also: double (88.30]), doubledouble (8.37), tripledouble (8.149)), round (8.127)

8.39 dyadic

Name: dyadic
special value for global state display

Description:

e dyadic is a special value used for the global state display. If the global state display is equal to
dyadic, all data will be output in dyadic notation with numbers displayed in Gappa format.

As any value it can be affected to a variable and stored in lists.

See also: decimal ({8.25]), powers (8.103)), hexadecimal (8.62), binary (8.15)

39

8.40 equal

Name: ==
equality test operator

Usage:
exprl == expr? : (any type, any type) — boolean
Parameters:
e exprl and expr2 represent expressions
Description:

e The operator == evaluates to true iff its operands expr! and expr2 are syntactically equal and
different from error or constant expressions that evaluate to the same floating-point number with
the global precision prec. The user should be aware of the fact that because of floating-point
evaluation, the operator == is not exactly the same as the mathematical equality.

Example 1:

> "Hello"
true

> "Hello" == "Salut";
false

> "Hello" == b;

false

>5 + x =5 + x;
true

"Hello";

Example 2:

> 1 == exp(0);

true

> asin(1) * 2 == pi;
true

> exp(5) == log(4);
false

Example 3:

> prec = 12;

The precision has been set to 12 bits.
> 16384 == 16385;

true

Example 4:

> error == error;
false

See also: != (8.87), > (8.59), >= (8.58), <= (8.73)), < (8.81)), ! (8-89), && (B.6), || (8-93), error ,
prec (8.104)

40

8.41 erf

Name: erf
the error function.

Description:

e erf is the error function defined by:

e It is defined for every real number x.

See also: erfc (8.42), exp (8.46)

8.42 erfc

Name: erfc
the complementary error function.

Description:
e erfc is the complementary error function defined by erfc(x) = 1 — erf(z).

e It is defined for every real number x.

See also: erf (8.41)

8.43 error

Name: error
expression representing an input that is wrongly typed or that cannot be executed

Usage:
error : error
Description:

e The variable error represents an input during the evaluation of which a type or execution error
has been detected or is to be detected. Inputs that are syntactically correct but wrongly typed
evaluate to error at some stage. Inputs that are correctly typed but containing commands that
depend on side-effects that cannot be performed or inputs that are wrongly typed at meta-level
(cf. parse), evaluate to error.

Remark that in contrast to all other elements of the Sollya language, error compares neither equal
nor unequal to itself. This provides a means of detecting syntax errors inside the Sollya language
itself without introducing issues of two different wrongly typed input being equal.

Example 1:

> print(5 + "foo");
error

Example 2:

> error;
error

Example 3:

41

> error == error;
false
> error != error;
false

Example 4:

> correct = 5 + 6;
> incorrect = 5 + "foo";

> (correct == error || correct != error);
true

> (incorrect == error || incorrect != error);
false

See also: void (8.153)), parse (8.94))

8.44 evaluate

Name: evaluate
evaluates a function at a constant point or in a range

Usage:
evaluate(function, constant) : (function, constant) — constant | range
evaluate(function, range) : (function, range) — range
evaluate(function, function?) : (function, function) — function
Parameters:

e function represents a function

e constant represents a constant point

e range represents a range

e function? represents a function that is not constant

Description:

e If its second argument is a constant constant, evaluate evaluates its first argument function at

the point indicated by constant. This evaluation is performed in a way that the result is a faithful
rounding of the real value of the function at constant to the current global precision. If such a
faithful rounding is not possible, evaluate returns a range surely encompassing the real value of
the function function at constant. If even interval evaluation is not possible because the expression
is undefined or numerically unstable, NaN will be produced.

If its second argument is a range range, evaluate evaluates its first argument function by interval
evaluation on this range range. This ensures that the image domain of the function function on
the pre-image domain range is surely enclosed in the returned range.

If its second argument is a function function2 that is not a constant, evaluate replaces all oc-
curences of the free variable in function function by function function2.

Example 1:

> print(evaluate(sin(pi * x), 2.25));
0.707106781186547524400844362104849039284835937688470741

Example 2:

42

>

print(evaluate(sin(pi * x), 2));

[-0.172986452514381269516508615031098129542836767991679e-12714;0.759411982011879
631450695643145256617060390843900679e-12715]

Example 3:

>

[-0.514339027267725463004699891996191240734922416542101e-49;0.707106781186547524
400844362104849039284835937688663]

print(evaluate(sin(pi * x), [2, 2.25]));

Example 4:

>

sin((pi) * (2 + 0.25 * x))

print(evaluate(sin(pi * x), 2 + 0.25 * x));

Example 5:

>

@NaN@

print (evaluate(sin(pi * 1/x), 0));

See also: isevaluable (8.72)

8.45

execute

Name: execute
executes the content of a file

Usage:

execute(filename) : string — void

Parameters:

e filename is a string representing a file name

Description:

execute opens the file indicated by filename, and executes the sequence of commands it contains.
This command is evaluated at execution time: this way you can modify the file filename (for
instance using bashexecute) and execute it just after.

If filename contains a command execute, it will be executed recursively.
If filename contains a call to restart, it will be neglected.

If filename contains a call to quit, the commands following quit in filename will be neglected.

Example 1:

= VvV V VN V V

a=2;
a;

print("a=1;") > "example.sollya";
execute("example.sollya");
a;

Example 2:

43

> verbosity=1!;

> print("a=1; restart; a=2;") > "example.sollya";

> execute("example.sollya");

Warning: a restart command has been used in a file read into another.
This restart command will be neglected.

> a;

2

Example 3:

> verbosity=1!;

> print("a=1; quit; a=2;") > "example.sollya";

> execute("example.sollya");

Warning: the execution of a file read by execute demanded stopping the interpret
ation but it is not stopped.

> a;

1

See also: parse (8.94), readfile (8.118]), write (8.155), print (8.107), bashexecute (8.14))

8.46 exp

Name: exp
the exponential function.

Description:

e exp is the usual exponential function defined as the solution of the ordinary differential equation
y' =y with y(0) = 1.

e exp(x) is defined for every real number x.

See also: exp (8.46)), log (8.77)

8.47 expand

Name: expand
expands polynomial subexpressions

Usage:
expand(function) : function — function
Parameters:
e function represents a function
Description:

e expand(function) expands all polynomial subexpressions in function function as far as possible.
Factors of sums are multiplied out, power operators with constant positive integer exponents are
replaced by multiplications and divisions are multiplied out, i.e. denomiators are brought at the
most interior point of expressions.

Example 1:

> print (expand(x~3));
X * X ¥ X

Example 2:

44

> print(expand((x + 2)°3 + 2 * x));
8+ 12 x x + 6 x x * X+ X *X * X+ 2 %X

Example 3:

> print(expand(exp((x + (x + 3))75)));

exp(243 + 405 * x + 270 * x * x + 90 * x * x * x + 156 * X * x * X * X + X *
X ¥ X * x+ X % 405+ 108 *x x * 5 x x + 54 x x * x * 5 *x x + 12 * x * X ¥ X
X+ X %X %X *Xx*x5*xx+x*x*x 270+ 27 *xx xx*xx *x 10+ 9 *x x X
x * 10+ x * x * X * x *x x * 10 + x *x x * x *x 90 + 6 * x * x * x * x *x 10
X
*

Mo+ % % M
* M X O x

* x k x *x x * 10 + x * x * X ¥ X * b x x + 15 * x * x * x *x ¥x + X * X *

x)

LI

See also: simplify (8.133), simplifysafe (8.134), horner (8.65)

8.48 expml

Name: expml
translated exponential function.

Description:
e expml is defined by expml(z) = exp(z) — 1.
e It is defined for every real number x.

See also: exp (8.46))

8.49 exponent

Name: exponent
returns the scaled binary exponent of a number.

Usage:
exponent(z) : constant — integer
Parameters:
e 1 is a dyadic number.
Description:
e exponent(x) is by definition 0 if x equals 0, NaN, or Inf.

e If z is not zero, it can be uniquely written as x = m - 2° where m is an odd integer and e is an
integer. exponent(x) returns e.

Example 1:

> a=round (Pi,20,RN);
> e=exponent(a);

> e;

-17

> m=mantissa(a);

> a-m*27e;

0

See also: mantissa (8.82)), precision ({8.105)

45

8.50

externalplot

Name: externalplot
plots the error of an external code with regard to a function

Usage:

externalplot(filename, mode, function, range, precision) : (string, absolute|relative, function, range,

integer) — void

externalplot(filename, mode, function, range, precision, perturb) : (string, absolute|relative, function,

range, integer, perturb) — void

externalplot(filename, mode, function, range, precision, plot mode, result filename) : (string,

absolute|relative, function, range, integer, file|postscript|postscriptfile, string) — void

externalplot(filename, mode, function, range, precision, perturb, plot mode, result filename) : (string,

absolute|relative, function, range, integer, perturb, file|postscript|postscriptfile, string) — void

Description:

The command externalplot plots the error of an external function evaluation code sequence
implemented in the object file named filename with regard to the function function. If mode
evaluates to absolute, the difference of both functions is considered as an error function; if mode
evaluates to relative, the difference is quotiented by the function function. The resulting error
function is plotted on all floating-point numbers with precision significant mantissa bits in the
range range.

If the sixth argument of the command externalplot is given an evaluates to perturb, each of
these floating-point numbers is perturbed by a random value that is uniformly distributed in +1
ulp around the original precision bit floating-point variable.

If a sixth and seventh argument, respectively a seventh and eighth argument in the presence of
perturb as a sixth argument, are given that evaluate to a variable of type file|postscript|postscriptfile
respectively to a character sequence of type string, externalplot will plot (additionally) to a file
in the same way as the command plot does. See plot for details.

The external function evaluation code given in the object file name filename is supposed to define
a function name £ as follows (here in C syntax): void f(mpfr_t rop, mpfr_ op). This function
is supposed to evaluate op with an accuracy corresponding to the precision of rop and assign this
value to rop.

Example 1:

>

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -1
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

bashexecute("gcc -fPIC -c externalplotexample.c");

See also: plot (8.97), asciiplot (8.8), perturb (8.95)), absolute (8.2)), relative (8.120)), file (8.53),
postscript (8.100)), postscriptfile (8.101), bashexecute (8.14), externalproc (8.51)), library (8.75

8.51

externalproc

Name: externalproc

binds

an external code to a Sollya procedure

Usage:

externalproc(identifier, filename, argumenttype — > resulttype) : (identifier type, string, type type,

type type) — void

Parameters:

46

e identifier represents the identifier the code is to be bound to

e filename of type string represents the name of the object file where the code of procedure can be
found

e argumenttype represents a definition of the types of the arguments of the Sollya procedure and the
external code

e resulttype represents a definition of the result type of the external code
Description:

e externalproc allows for binding the Sollya identifier identifier to an external code. After this
binding, when Sollya encounters identifier applied to a list of actual parameters, it will evaluate
these parameters and call the external code with these parameters. If the external code indicated
success, it will receive the result produced by the external code, transform it to Sollya’s iternal
representation and return it.

In order to allow correct evaluation and typing of the data in parameter and in result to be passed
to and received from the external code, externalproc has a third parameter argumenttype — >
resulttype. Both argumenttype and resulttype are one of void, constant, function, range, integer,
string, boolean, list of constant, list of function, list of range, list of integer, list of string, list of
boolean.

If upon a usage of a procedure bound to an external procedure the type of the actual parameters
given or its number is not correct, Sollya produces a type error. An external function not applied
to arguments represents itself and prints out with its argument and result types.

The external function is supposed to return an integer indicating success. It returns its result
depending on its Sollya result type as follows. Here, the external procedure is assumed to be
implemented as a C function.

If the Sollya result type is void, the C function has no pointer argument for the result. If the Sollya
result type is constant, the first argument of the C function is of C type mpfr_t *, the result is
returned by affecting the MPFR variable. If the Sollya result type is function, the first argument
of the C function is of C type node **node **, the result is returned by the node * pointed with
a new node *. If the Sollya result type is range, the first argument of the C function is of C type
mpfi_t *, the result is returned by affecting the MPFI variable. If the Sollya result type is integer,
the first argument of the C function is of C type int *, the result is returned by affecting the int
variable. If the Sollya result type is string, the first argument of the C function is of C type char
*x*_ the result is returned by the char * pointed with a new char *. If the Sollya result type is
boolean, the first argument of the C function is of C type int *, the result is returned by affecting
the int variable with a boolean value. If the Sollya result type is list of type, the first argument of
the C function is of C type chain **, the result is returned by the chain * pointed with a new
chain #*. This chain contains for Sollya type constant pointers mpfr_t * to new MPFR variables,
for Sollya type function pointers node * to new nodes, for Sollya type range pointers mpfi_t * to
new MPFT variables, for Sollya type integer pointers int * to new int variables for Sollya type
string pointers char * to new char * variables and for Sollya type boolean pointers int * to new
int variables representing boolean values.

The external procedure affects its possible pointer argument if and only if it succeeds. This means, if
the function returns an integer indicating failure, it does not leak any memory to the encompassing
environment.

The external procedure receives its arguments as follows: If the Sollya argument type is void, no
argument array is given. Otherwise the C function receives a C void ** argument representing
an array of size equal to the arity of the function where each entry (of C type void *) represents
a value with a C type depending on the corresponding Sollya type. If the Sollya type is constant,
the C type the void * is to be casted to is mpfr_t *. If the Sollya type is function, the C type
the void * is to be casted to is node *. If the Sollya type is range, the C type the void * is to
be casted to is mpfi_t *. If the Sollya type is integer, the C type the void * is to be casted to
is int *. If the Sollya type is string, the C type the void * is to be casted to is char *. If the

47

Sollya type is boolean, the C type the void * is to be casted to is int *. If the Sollya type is list
of type, the C type the void * is to be casted to is chain *. Here depending on type, the values
in the chain are to be casted to mpfr_t * for Sollya type constant, node * for Sollya type function,
mpfi_t * for Sollya type range, int * for Sollya type integer, char * for Sollya type string and
int * for Sollya type boolean.

The external procedure is not supposed to alter the memory pointed by its array argument void
ok

In both directions (argument and result values), empty lists are represented by chain * NULL
pointers.

In contrast to internal procedures, externally bounded procedures can be considered as objects

inside Sollya that can be assigned to other variables, stored in list etc.

Example 1:

> foo;

foo(integer, integer) -> integer
> foo(5, 6);

11

> verbosity = 1!;

> foo();

ly typed

error
> a = foo;
> a(5,6);
11

> bashexecute("gcc -fPIC -Wall -c externalprocexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocexample externalprocexample.o");

> externalproc(foo, "./externalprocexample", (integer, integer) -> integer);

Warning: at least one of the given expressions or a subexpression is not correct

or its evaluation has failed because of some error on a side-effect.

See also: library (8.75]), externalplot
function (8.57)), range (8.115)), integer

8.52 false

Name: false
the boolean value representing the false.

Description:
e false is the usual boolean value.

Example 1:

3.50

8.69

, bashexecute (8.14]), void (8.153)), constant (8.22)),
, string (8.139)), boolean (8.16|), list of ([8.76|)

> true && false;
false
> 2<1;
false

See also: true (8.150), && (8.6), || (8-93)

48

8.53 file
Name: file
special value for commands plot and externalplot

Description:

e file is a special value used in commands plot and externalplot to save the result of the command
in a data file.

e As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=file;
> name="plotSinCos";
> plot(sin(x),0,cos(x), [-Pi,Pi],savemode, name);

See also: externalplot (8.50), plot , postscript (8.100)), postscriptfile (8.101))

8.54 findzeros

Name: findzeros
gives a list of intervals containing all zeros of a function on an interval.

Usage:
findzeros(f,]) : (function, range) — list
Parameters:
e f is a function.
e [is an interval.
Description:

e findzeros(f,]) returns a list of intervals I1, ... ,In such that, for every zero z of f, there exists
some k such that z € I}.

e The list may contain intervals Ik that do not contain any zero of f. An interval Ik may contain
many zeros of f.

e This command is ment for cases when safety is critical. If you want to be sure not to forget
any zero, use findzeros. However, if you just want to know numerical values for the zeros of f,
dirtyfindzeros should be quite satisfactory and a lot faster.

e If 0 denotes the value of global variable diam, the algorithm ensures that for each k, |I| < ¢ - |1].

e The algorithm used is basically a bisection algorithm. It is the same algorithm that the one used
for infnorm. See the help page of this command for more details. In short, the behavior of the
algorithm depends on global variables prec, diam, taylorrecursions and hopitalrecursions.

Example 1:

> findzeros(sin(x), [-5;5]1);

[1[-0.314208984375e1;-0.3140869140625e1], [-0.1220703125e-2;0.1220703125e-2], [0

.3140869140625e1;0.314208984375e1] |]

> diam=1e-10!;

> findzeros(sin(x), [-5;5]1);

[1[-0.314159265370108187198638916015625e1;-0.3141592652536928653717041015625e1] ,
[-0.116415321826934814453125e-8;0.116415321826934814453125e-8], [0.314159265253

6928653717041015625e1;0.314159265370108187198638916015625e1] |]

See also: dirtyfindzeros (8.31)), infnorm ({8.68)), prec (8.104)), diam ({8.29), taylorrecursions (8.147)),

hopitalrecursions (8.64))

49

8.55 floor

Name: floor
the usual function floor.

Description:

e floor is defined as usual: floor(x) is the greatest integer y such that y < z.

e It is defined for every real number x.

See also: ceil (8.18)

8.56 fullparentheses

Name: fullparentheses
activates, deactivates or inspects the state variable controlling output with full parenthesizing

Usage:
fullparentheses = activation value : onloff — void
fullparentheses = activation value ! : on|off — void
fullparentheses = 7 : void — on|off
Parameters:

e activation value represents on or off, i.e. activation or deactivation

Description:

e An assignment fullparentheses = activation value, where activation value is one of on or off,

activates respectively deactivates the output of expressions with full parenthezing. In full paren-
theszing mode, Sollya commands like print, write and the implicit command when an expression
is given at the prompt will output expressions with parentheses at all places where it is necessary for
expressions containing infix operators to be reparsed with the same result. Otherwise parentheses
around associative operators are omitted.

If the assignment fullparentheses = activation value is followed by an exclamation mark, no
message indicating the new state is displayed. Otherwise the user is informed of the new state of
the global mode by an indication.

The expression fullparentheses = 7 evaluates to a variable of type on|off, indicating whether or
not the full parenthesized output of expressions is activated or not.

Example 1:

> autosimplify = off!;

> fullparentheses = off;

Full parentheses mode has been deactivated.
> print(1 + 2 + 3);

1+2+3

> fullparentheses = on;

Full parentheses mode has been activated.

> print(1 + 2 + 3);

1+2)+3

See

also: print (8.107), write (8.155), autosimplify (8.13)

50

8.57 function

Name: function
keyword representing a function type

Usage:
function : type type
Description:

e function represents the function type for declarations of external procedures by means of exter-
nalproc.

Remark that in contrast to other indicators, type indicators like function cannot be handled
outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.51)), boolean (8.16]), constant (8.22)), integer (8.69), list of (8.76)), range
(18.115)), string (8.139)

8.58 ge

Name: >=
greater-than-or-equal-to operator

Usage:
exprl >= expr2 : (constant, constant) — boolean
Parameters:
e czprl and expr2 represent constant expressions
Description:

e The operator >= evaluates to true iff its operands expr! and expr2 evaluate to two floating-point
numbers a; respectively as with the global precision prec and a; is greater than or equal to as.
The user should be aware of the fact that because of floating-point evaluation, the operator >= is
not exactly the same as the mathematical operation greater-than-or-equal-to.

Example 1:

> 5 >= 4;

true

> 5 >= b;

true

> 5 >= 6;

false

> exp(2) >= exp(1);
true

> log(1l) >= exp(2);
false

Example 2:

> prec = 12;

The precision has been set to 12 bits.
> 16384 >= 16385;

true

See also: == (8.40), != (8:87), > (8:59), <= (8.73), < (8:81), ! (8:89), && (B.6), || (8.93), prec (8.104)

51

8.59 gt

Name: >
greater-than operator

Usage:
exprl > expr2 : (constant, constant) — boolean
Parameters:
e exprl and expr2 represent constant expressions
Description:

e The operator > evaluates to true iff its operands expr! and ezpr2 evaluate to two floating-point
numbers a; respectively as with the global precision prec and a; is greater than as. The user
should be aware of the fact that because of floating-point evaluation, the operator > is not exactly
the same as the mathematical operation greater-than.

Example 1:

>5 > 4;

true

>5 > 5b;

false

>5 > 6;

false

> exp(2) > exp(1);
true

> log(1) > exp(2);
false

Example 2:

> prec = 12;

The precision has been set to 12 bits.
> 16384 > 16385;

false

See also: == , 1= 7 >= 7 <= (8.73)), < (8.81), ! (8.89), && , [l 7 prec

®-104)

8.60 guessdegree

Name: guessdegree
returns the minimal degree needed for a polynomial to approximate a function with a certain error on
an interval.

Usage:
guessdegree(f,],eps,w) : (function, range, constant, function) — range
Parameters:
e f is the function to be approximated.
e [is the interval where the function must be approximated.

e cps is the maximal acceptable error.

52

e w (optional) is a weight function. Default is 1.

Description:

e guessdegree tries to find the minimal degree needed to approximate f on I by a polynomial with
an infinite error not greater than eps. More precisely, it finds n minimal such that there exists a

polynomial p of degree n such that ||pw — f||o < eps.

e guessdegree returns an interval: for common cases, this interval is reduced to a single number
(e.g. the minimal degree). But in certain cases, guessdegree does not succeed in finding the
minimal degree. In such cases the returned interval is of the form [n, p] such that:

— no polynomial of degree n — 1 gives an error less than eps.
— there exists a polynomial of degree p giving an error less than eps.

Example 1:

> guessdegree(exp(x),[-1;1],1e-10);
[10;10]

Example 2:

> guessdegree(1l, [-1;1], 1le-8, 1/exp(x));
[8;9]

See also: dirtyinfnorm (8.32), remez (8.121)

8.61 head

Name: head
gives the first element of a list.

Usage:
head(L) : list — any type
Parameters:
o [is a list.
Description:

e head(L) returns the first element of the list L. It is equivalent to L[0].

e If L is empty, the command will fail with an error.

Example 1:
> head([11,2,3]1);
1
> head([l1,2...11);
1

See also: tail (8.143])

8.62 hexadecimal

Name: hexadecimal
special value for global state display

Description:

e hexadecimal is a special value used for the global state display. If the global state display is
equal to hexadecimal, all data will be output in hexadecimal C99/ IEEE 754R, notation.

As any value it can be affected to a variable and stored in lists.

See also: decimal (8.25)), dyadic (8.39), powers (8.103), binary (8.15])

53

8.63 honorcoeffprec

Name: honorcoeffprec
indicates the (forced) honoring the precision of the coefficients in implementpoly

Usage:

honorcoeffprec : honorcoeffprec

Description:

e Used with command implementpoly, honorcoeffprec makes implementpoly honor the preci-

sion of the given polynomial. This means if a coefficient needs a double-double or a triple-double
to be exactly stored, implementpoly will allocate appropriate space and use a double-double or
triple-double operation even if the automatic (heuristical) determination implemented in command
implementpoly indicates that the coefficient could be stored on less precision or, respectively,

the operation could be performed with less precision. See implementpoly for details.

Example 1:

> verbosity = 1!;

> q = implementpoly(l - simplify(TD(1/6)) * x~2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c");

Warning: at least one of the coefficients of the given polynomial has been round
ed in a way

that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial

is different from the given one.

> printexpansion(q);

0x3££0000000000000 + x~2 * O0xbfc5555555555555

> r = implementpoly(l - simplify(TD(1/6)) * x~2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c" ,honorcoeffprec);

Warning: the infered precision of the 2th coefficient of the polynomial is great
er than

the necessary precision computed for this step. This may make the automatic dete
rmination

of precisions useless.

> printexpansion(r);

0x3££0000000000000 + x~2 * (0xbfc5555555555555 + 0xbc6555565555555655 + 0xb9055555
55555555)

See

also: implementpoly (8.66), printexpansion (8.108)

8.64 hopitalrecursions

Name: hopitalrecursions
controls the number of recursion steps when applying L’Hopital’s rule.

Description:

e hopitalrecursions is a global variable. Its value represents the number of steps of recursion that

are tried when applying L’Hopital’s rule. This rule is applied by the interval evaluator present in
the core of Sollya (and particularly visible in commands like infnorm).

e If an expression of the form f/g has to be evaluated by interval arithmetic on an interval I and if f

and g have a common zero in I, a direct evaluation leads to NaN. Sollya implements a safe heuristic
to avoid this, based on L'Hopital’s rule: in such a case, it can be shown that (f/g)(I) C (f'/g")(I).
Since the same problem may hold for f’/¢’, the rule is applied recursively. The number of step in
this recursion process is controlled by hopitalrecursions.

54

e Setting hopitalrecursions to 0 makes Sollya use this rule only one time ; setting it to 1 makes
Sollya use the rule two times, and so on. In particular: the rule is always applied at least once, if
necessary.

Example 1:

> hopitalrecursions=0;

The number of recursions for Hopital’s rule has been set to O.

> evaluate(log(1+x)~2/x°2,[-1/2; 11);

[-@Inf@;@Inf@]

> hopitalrecursions=1;

The number of recursions for Hopital’s rule has been set to 1.

> evaluate(log(1+x)~2/x"2,[-1/2; 11);
[-0.252258872223978123766892848583270627230200053744108e1;0.67725887222397812376
6892848583270627230200053744116e1]

8.65 horner

Name: horner
brings all polynomial subexpressions of an expression to Horner form

Usage:
horner(function) : function — function
Parameters:
e function represents the expression to be rewritten in Horner form
Description:

e The command horner rewrites the expression representing the function function in a way such
that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written
in Horner form. The command horner does not endanger the safety of computations even in
Sollya’s floating-point environment: the function returned is mathematically equal to the function
function.

Example 1:

> print (horner(l + 2 * x + 3 * x72));

1 +x* (2+xx%3)

> print (horner((x + 1)°7));

1+x*x (7T+x* (21 +x % (35 +x % (8B +x* (21 + x x (7 + x))))))

Example 2:

> print (horner(exp((x + 1)75) - log(asin(x + x73) + x)));
exp(1 + x % (5 +x % (10 + x * (10 + x * (5 + x))))) - log(asin(x * (1 + x72)) +
x)

See also: canonical (8.17)), print (8.107)

8.66 implementpoly

Name: implementpoly
implements a polynomial using double, double-double and triple-double arithmetic and generates a
Gappa proof

Usage:

55

implementpoly (polynomial, range, error bound, format, functionname, filename) : (function, range,
constant, D|double|DD|doubledouble|TD|tripledouble, string, string) — function
implementpoly (polynomial, range, error bound, format, functionname, filename, honor coefficient
precisions) : (function, range, constant, D|double|DD|doubledouble| TD|tripledouble, string, string,
honorcoeffprec) — function
implementpoly (polynomial, range, error bound, format, functionname, filename, proof filename) :
(function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string, string, string) — function
implementpoly (polynomial, range, error bound, format, functionname, filename, honor coefficient
precisions, proof filename) : (function, range, constant, D|double|DD|doubledouble|TD|tripledouble, string,
string, honorcoeffprec, string) — function

Description:

e The command implementpoly implements the polynomial polynomial in range range as a function
called functionname in C code using double, double-double and triple-double arithmetic in a way
that the rounding error (estimated at its first order) is bounded by error bound. The produced code
is output in a file named filename. The argument format indicates the double, double-double or
triple-double format of the variable in which the polynomial varies, influencing also in the signature
of the C function.

If a seventh or eightth argument proof filename is given and if this argument evaluates to a variable
of type string, the command implementpoly will produce a Gappa proof that the rounding error is
less than the given bound. This proof will be output in Gappa syntax in a file name proof filename.

The command implementpoly returns the polynomial that has been implemented. As the com-
mand implementpoly tries to adapt the precision needed in each evaluation step to its strict
minimum and as it renormalizes double-double and triple-double precision coefficients to a round-
to-nearest expansion, the polynomial return may differ from the polynomial polynomial. Neverthe-
less the difference will be small enough that the rounding error bound with regard to the polynomial
polynomial (estimated at its first order) will be less than the given error bound.

If a seventh argument honor coefficient precisions is given and evaluates to a variable honorco-
effprec of type honorcoeffprec, implementpoly will honor the precision of the given polynomial
polynomials. This means if a coefficient needs a double-double or a triple-double to be exactly
stored, implementpoly will allocate appropriate space and use a double-double or triple-double
operation even if the automatic (heuristical) determination implemented in command implement-
poly indicates that the coefficient could be stored on less precision or, respectively, the operation
could be performed with less precision. The use of honorcoeffprec has advantages and disad-
vantages. If the polynomial polynomial given has not been determined by a process considering
directly polynomials with floating-point coefficients, honorcoeffprec should not be indicated. The
implementpoly command can then determine the needed precision using the same error estima-
tion as used for the determination of the precisions of the operations. Generally, the coefficients
will get rounded to double, double-double and triple-double precision in a way that minimizes their
number and respects the rounding error bound error bound. Indicating honorcoeffprec may in
this case short-circuit most precision estimations leading to sub-optimal code. On the other hand,
if the polynomial polynomial has been determined with floating-point precisions in mind, honor-
coeffprec should be indicated because such polynomials often are very sensitive in terms of error
propgation with regard to their coefficients’ values. Indicating honorcoeffprec prevents the im-
plementpoly command from rounding the coefficients and altering by many orders of magnitude
approximation error of the polynomial with regard to the function it approximates.

The implementer behind the implementpoly command makes some assumptions on its input
and verifies them. If some assumption cannot be verified, the implementation will not succeed and
implementpoly will evaluate to a variable error of type error. The same behaviour is observed if
some file is not writeable or some other side-effect fails, e.g. if the implementer runs out of memory.

As error estimation is performed only on the first order, the code produced by the implementpoly
command should be considered valid iff a Gappa proof has been produced and successfully run in
Gappa.

Example 1:

56

> implementpoly(l - 1/6 * x°2 + 1/120 * x"4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c");

1+ x72 % ((-0.1666666666666666574148081281236954964697360992431640625) + x~2 *
0.833333333333333321768510160154619370587170124053955078125e-2)

> readfile("implementation.c");

#define p_coeff_Oh 1.000
000000000000000000000e+00

#define p_coeff_2h -1.6666666666666665741480812812369549646973609924316406250000
0000000000000000000000e-01

#define p_coeff_4h 8.33333333333333321768510160154619370587170124053955078125000
000000000000000000000e-03

void p(double *p_resh, double x) {
double p_x_0_pow2h;

p_x_0_pow2h = x * x;

double p_t_1_0h;
double p_t_2_0h;
double p_t_3_0h;
double p_t_4_0Oh;
double p_t_5_0h;
p_-t_1_0h = p_coeff_4h;
p-t_2_0h = p_t_1_0h * p_x_O_pow2h;
p_t_3_0h = p_coeff_2h + p_t_2_0h;
p_t_4_0h = p_t_3_0h * p_x_O_pow2h;
p_t_5_0h = p_coeff_Oh + p_t_4_0h;
*p_resh = p_t_5_0h;
}

Example 2:

> implementpoly(l - 1/6 * x°2 + 1/120 * x"4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c","implementation.gappa");

1+ x72 x ((-0.1666666666666666574148081281236954964697360992431640625) + x"2 *
0.833333333333333321768510160154619370587170124053955078125e-2)

Example 3:

57

> verbosity = 1!;

> q = implementpoly(l - simplify(TD(1/6)) * x~2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c");

Warning: at least one of the coefficients of the given polynomial has been round
ed in a way

that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial

is different from the given one.

> printexpansion(q) ;

0x3££0000000000000 + x~2 * O0xbfc5555555555555

> r = implementpoly(l - simplify(TD(1/6)) * x~2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c" ,honorcoeffprec);

Warning: the infered precision of the 2th coefficient of the polynomial is great
er than

the necessary precision computed for this step. This may make the automatic dete
rmination

of precisions useless.

> printexpansion(r);

0x3££0000000000000 + x~2 * (0xbfcb5555555555555 + 0xbc6555565555555655 + 0xb9055555
55555555)

Example 4:

> p = 0x3££0000000000000
* (0x3£fc5555555555559 +

+ x * (0x3££0000000000000 * (0x3£e0000000000000
b4

* (0x3f56c16c16bfbeb7 + x
X

+ + X
(0x3fab5555555555bd + x (0x3£811111111106e2 + x
X X
X

* ¥ M

(0x3f2a01a01a292dcd + (0x3efa01a0218a016a +

* (0x3ec71de360331aad + (0x3e927e42e3823bf3 + x * (0x3ebae6b2710c2c9a +

* (0x3e2203730c0a7cld + x * 0x3debdab57e0781df))))))))))));

> q = implementpoly(p, [-1/2;1/2],1b-60,D,"p","implementation.c" ,honorcoeffprec,"
implementation.gappa");

> if (q '= p) then print("During implementation, rounding has happened.") else p
rint ("Polynomial implemented as given.");
Polynomial implemented as given.

* ¥ ¥ ¥ N

See also: honorcoeffprec (8.63), roundcoefficients (8.128), double (8.36), doubledouble (8.37),
tripledouble (8.149)), readfile (8.118]), printexpansion (8.108|), error (8.43

8.67 inf

Name: inf
gives the lower bound of an interval.

Usage:

inf(I) : range — constant
inf(z) : constant — constant

Parameters:

e [is an interval.

e 1 is a real number.
Description:

e Returns the lower bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

58

e When called on a real number z, inf considers it as an interval formed of a single point: [x, x]. In
other words, inf behaves like the identity.

Example 1:

> inf([1;31);
1

> inf (0);

0

Example 2:

display=binary!;
I=[0.111110000011111_2; 17;
inf(I);

.11110000011111_2 * 27(-1)
prec=12!;

inf (I);

.11110000011111_2 * 27(-1)

= VvV V= V V V

See also: mid (8.83), sup (8.142)

8.68 infnorm

Name: infnorm
computes an interval bounding the infinite norm of a function on an interval.

Usage:
infnorm(f,I,filename,Ilist) : (function, range, string, list) — range

Parameters:

e f is a function.

e [is an interval.

e filename (optional) is the name of the file into a proof will be saved.

e [List (optional) is a list of intervals to be excluded.
Description:

e infnorm(f,range) computes an interval bounding the infinite norm of the given function f on the
interval I, e.g. computes an interval J such that max,er{|f(x)|} C J.

e If filename is given, a proof in english will be produced (and stored in file called filename) proving
that max,ecr{|f(x)|} C J.

e If a list IList of intervals I1, ... ,In is given, the infinite norm will be computed on I (I; U...UL,).

e The function f is assumed to be at least twice continuous on I. More generally, if f is C*, global
variables hopitalrecursions and taylorrecursions must have values not greater than k.

e If the interval is reduced to a single point, the result of infnorm is an interval containing the exact
absolute value of f at this point.

e If the interval is not bound, the result will be [0, +o00] which is true but perfectly useless. infnorm
is not ment to be used with infinite intervals.

e The result of this command depends on the global variables prec, diam, taylorrecursions and
hopitalrecursions. The contribution of each variable is not easy even to analyse.

59

— The algorithm uses interval arithmetic with precision prec. The precision should thus be set
big enough to ensure that no critical cancellation will occur.

— When an evaluation is performed on an interval [a,], if the result is considered being too
large, the interval is split into [a, ‘IT“’] and [‘ZT“’, b] and so on recursively. This recursion step
is not performed if the (b —a) < ¢ - |I| where ¢ is the value of variable diam. In other words,
diam controls the minimum length of an interval during the algorithm.

— To perform the evaluation of a function on an interval, Taylor’s rule is applied, e.g. f([a,b]) C
f(m) +[a—m, b—m]- f'([a, b]) where m = “E°. This rule is applied recursively n times
where n is the value of variable taylorrecursions. Roughly speaking, the evaluations will
avoid decorrelation up to order n.

When a function of the form { has to be evaluated on an interval [a, b] and when g and

h vanish at a same point z of the interval, the ratio may be defined even if the expression

igg = 2 does not make any sense. In this case, L’'Hopital’s rule may be used and (£) ([a, b]) C

(;’L—:) ([a, b]). Since the same can occur with the ratio ,97:, the rule is applied recursively.

Variable hopitalrecursions controls the number of recursion steps.

The algorithm used for this command is quite complex to be explained here. Please find a
complete description in the following article: S. Chevillard and C. Lauter A certified infinite
norm for the implementation of elementary functions LIP Research Report number RR2007-26
http://prunel.ccsd.cnrs.fr/ensl-00119810

Example 1:

>

[0.200855369231876677409285296545817178969879078385537e2;0.200855369231876677409
285296545817178969879078385544e2]

infnorm(exp(x), [-2;3]);

Example 2:

>

[0.200855369231876677409285296545817178969879078385537e2;0.200855369231876677409
285296545817178969879078385544e2]

infnorm(exp(x), [-2;3],"proof.txt");

Example 3:

>

[0.200855369231876677409285296545817178969879078385537e2;0.200855369231876677409
285296545817178969879078385544e2]

infnorm(exp(x),[-2;3], [[0;1], [2;2.5]11);

Example 4:

>

[0.200855369231876677409285296545817178969879078385537e2;0.200855369231876677409
285296545817178969879078385544e2]

infnorm(exp(x), [-2;3],"proof.txt", [l [0;1], [2;2.5]111);

Example 5:

>

[0.271828182845904523536028747135266249775724709369989%¢e1;0.271828182845904523536
028747135266249775724709369998e1]

infnorm(exp(x), [1;1]);

Example 6:

>

[0;@Infa@]

infnorm(exp(x), [log(0);log(1)1);

See also: prec (8.104), diam ({8.29), hopitalrecursions (8.64), dirtyinfnorm (8.32), checkinfnorm

®-19)

60

8.69 integer

Name: integer
keyword representing a machine integer type

Usage:
integer : type type
Description:

e integer represents the machine integer type for declarations of external procedures by means of
externalproc.

Remark that in contrast to other indicators, type indicators like integer cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.51)), boolean (8.16]), constant (8.22)), function (8.57)), list of (8.76), range
(8.115)), string (8.139)

8.70 integral

Name: integral
computes an interval bounding the integral of a function on an interval.

Usage:
integral(f,I) : (function, range) — range
Parameters:
e f is a function.
e [is an interval.
Description:
e integral(f,]) returns an interval J such that the exact value of the integral of f on I lies in J.

e This command is safe but very unefficient. Use dirtyintegral if you just want an approximate
value.

e The result of this command depends on the global variable diam. The method used is the following;:
I is cut into intervals of length not greater then 0 - |I| where ¢ is the value of global variable diam.
On each small interval J, an evaluation of f by interval is performed. The result is multiplied by
the length of J. Finally all values are summed.

Example 1:

> sin(10);

-0.544021110889369813404747661851377281683643012916219

> integral(cos(x), [0;10]);
[-0.547101979835796902240976371635259430756985992573329;-0.540940151300131838481
505408813733707440537411917285]

> diam=1e-5!;

> integral(cos(x), [0;10]);
[-0.544329156859554271018577802959369567752938763827772;-0.543713064012499695080
396442219274890104258031735553]

See also: points (8.99), dirtyintegral (8.33))

61

8.71 1isbound

Name: isbound

indicates whether a variable is bound or not.

Usage:

Parameters:
e ident is a name.

Description:

e isbound(ident) returns a boolean value indicating whether the name ident is used or not to
represent, a variable. It returns true when ident is the name used to represent the global variable
or if the name is currently used to refer to a (possibly local) variable.

e When a variable is defined in a block and has not been defined outside, isbound returns true when
called inside the block, and false outside. Note that isbound returns true as soon as a variable
has been declared with var, even if no value is actually stored in it.

e If ident! is bound to a variable and if ident2 refers to the global variable, the command re-
name(ident2, ident!) hides the value of ident! which becomes the global variable. However, if
the globlal variable is again renamed, ident! gets its value back. In this case, isbound(ident1)
returns true. If ident! was not bound before, isbound(ident!) returns false after that ident! has

been renamed.

Example 1:

isbound(ident) : boolean

> isbound(x);
false

> isbound(f);
false

> isbound(g);
false

> f=sin(x);

> isbound(x);
true

> isbound(f);
true

> isbound(g);
false

Example 2:

> isbound(a);
false

true
> isbound(a);
false

> { var a; isbound(a); };

Example 3:

> f=sin(x);

> isbound(x);
true

> rename(x,y) ;
> isbound(x);
false

62

Example 4:

x=1;
f=sin(y);
rename (y,x) ;
f;

sin(x)

> X;

vV V V V

X
> isbound(x);
true

> rename(x,y);
> isbound(x);
true

> X;

1

See also: rename (|8.122))

8.72 isevaluable

Name: isevaluable
tests whether a function can be evaluated at a point

Usage:
isevaluable(function, constant) : (function, constant) — boolean
Parameters:

e function represents a function

e constant represents a constant point
Description:

e isevaluable applied to function function and a constant constant returns a boolean indicating
whether or not a subsequent call to evaluate on the same function function and constant constant
will produce a numerical result or NaN. l.e. isevaluable returns false iff evaluate will return
NaN.

Example 1:

> isevaluable(sin(pi * 1/x), 0.75);

true

> print(evaluate(sin(pi * 1/x), 0.75));
-0.866025403784438646763723170752936183471402626905185165

Example 2:

> isevaluable(sin(pi * 1/x), 0.5);

true

> print(evaluate(sin(pi * 1/x), 0.5));
[-0.172986452514381269516508615031098129542836767991679¢-12714;0.759411982011879
631450695643145256617060390843900679e-12715]

Example 3:
> isevaluable(sin(pi * 1/x), 0);
false
> print(evaluate(sin(pi * 1/x), 0));
@NaN@

See also: evaluate (8.44))

63

8.73 le

Name: <=
less-than-or-equal-to operator

Usage:
exprl <= expr2 : (constant, constant) — boolean
Parameters:
e exprl and expr2 represent constant expressions
Description:

e The operator <= evaluates to true iff its operands expr! and expr2 evaluate to two floating-point
numbers a; respectively as with the global precision prec and a; is less than or equal to as. The
user should be aware of the fact that because of floating-point evaluation, the operator <= is not
exactly the same as the mathematical operation less-than-or-equal-to.

Example 1:

> 5 <= 4;

false

> 5 <= b;

true

> 5 <= 6;

true

> exp(2) <= exp(1);
false

> log(1) <= exp(2);
true

Example 2:

> prec = 12;

The precision has been set to 12 bits.
> 16385 <= 16384;

true

See also: == (8.40)), != (8.87), >= (8:58), > (8:59), < (8-81), ! (8-89), && (B.6), || (8-93), prec (8.104)

8.74 length

Name: length
computes the length of a list or string.

Usage:

length(L) : list — integer
length(s) : string — integer

Parameters:

o L is a list.

e s is a string.
Description:

e length returns the length of a list or a string, e.g. the number of elements or letters.

64

e The empty list or string have length 0. If L is an end-elliptic list, length returns +Inf.
Example 1:

> length("Hello World!");
12

Example 2:

> length([l1,...,511);
5

Example 3:

> length([l11);
0

Example 4:

> length([l1,2...11);
@Infa@

8.75 library

Name: library
binds an external mathematical function to a variable in Sollya

Usage:
library (path) : string — function
Description:

e The command library lets you extends the set of mathematical functions known by Sollya. By
default, Sollya knows the most common mathematical functions such as exp, sin, erf, etc. Within
Sollya, these functions may be composed. This way, Sollya should satisfy the needs of a lot of
users. However, for particular applications, one may want to manipulates other functions such as
Bessel functions, or functions defined by an integral or even a particular solution of an ODE.

e library makes it possible to let Sollya know about new functions. In order to let it know, you have
to provide an implementation of the function you are interested with. This implementation is a C
file containing a function of the form:

int my_ident(mpfi_t result, mpfi_t op, int n)

The semantic of this function is the following: it is an implementation of the function and its
derivatives in interval arithmetic. my_ident (result, I, n) shall store in result an enclosure of
the image set of the n-th derivative of the function f over I: f(")(I) C result.

e The integer returned value has no meaning currently.

e You must not provide a non trivial implementation for any n. Most functions of Sollya needs
a relevant implementation of f, f/ and f”. For higher derivatives, its is not so critical and the
implementation may just store [—oo, +00] in result whenever n > 2.

e Note that you should respect somehow MPFI standards in your implementation: result has its
own precision and you should perform the intermediate computations so that result is as tighter
as possible.

e You can include sollya.h in your implementation and use library functionnalities of Sollya for your
implementation.

65

e To bind your function into Sollya, you must use the same identifier as the function name used in
your implementation file (my_ident in the previous example).

Example 1:

bashexecute("gcc -fPIC -Wall -c libraryexample.c");

bashexecute("gcc -shared -o libraryexample libraryexample.o -lgmp -lmpfr");
myownlog = library("./libraryexample");

evaluate(log(x), 2);
.693147180559945309417232121458176568075500134360248314207
evaluate(myownlog(x), 2);
.693147180559945309417232121458176568075500134360248314207

See also: bashexecute (8.14]), externalproc (8.51]), externalplot (8.50)

OV OV V V. YV

8.76 listof

Name: list of
keyword used in combination with a type keyword

Description:

e list of is used in combination with one of the following keywords for indicating lists of the respective
type in declarations of external procedures using externalproc: boolean, constant, function,
integer, range and string.

See also: externalproc (8.51), boolean (8.16)), constant (8.22)), function (8.57), integer (8.69),
range (8.115)), string (8.139)

8.77 log

Name: log
neperian logarithm.

Description:

e log is the neperian logarithm defined as the inverse of the exponential function: log(y) is the unique
real number = such that exp(z) = y.

e It is defined only for y € [0; +o0].

See also: exp (8.46)), log2 (8.80)), log10 (8.78)

8.78 logl0

Name: log10
decimal logarithm.

Description:
e log10 is the decimal logarithm defined by: logl0(z) = log(z)/log(10).

e It is defined only for z € [0; +00].

See also: log (8.77)), log2 (8.80))

66

8.79 loglp

Name: loglp
translated logarithm.

Description:
e loglp is the function defined by loglp(z) = log(1 + x).

e It is defined only for x € [—1;+00].

See also: log (8.77)

8.80 log2

Name: log2
binary logarithm.

Description:
e log2 is the binary logarithm defined by: log2(x) = log(z)/log(2).
e It is defined only for z € [0; 400].

See also: log (8.77), log10 (8.78)

8.81 It

Name: <
less-than operator

Usage:
exprl < expr? : (constant, constant) — boolean
Parameters:
e czprl and expr2 represent constant expressions
Description:

e The operator < evaluates to true iff its operands expr! and expr2 evaluate to two floating-point
numbers a; respectively as with the global precision prec and a; is less than as. The user should
be aware of the fact that because of floating-point evaluation, the operator < is not exactly the
same as the mathematical operation less-than.

Example 1:

> 5 < 4;

false

> 5 < b;

false

> 5 < 6;

true

> exp(2) < exp(1);
false

> log(1) < exp(2);
true

Example 2:

67

> prec = 12;

The precision has been set to 12 bits.
> 16384 < 16385;

false

See alsor == (). 1= §59. >= E5. > E30). <= ETD. ! 5. & ED). || ET. pree
E-109)

8.82 mantissa

Name: mantissa
returns the integer mantissa of a number.

Usage:
mantissa(z) : constant — integer
Parameters:
e 7 is a dyadic number.
Description:
e mantissa(x) is by definition x if x equals 0, NaN, or Inf.

e If z is not zero, it can be uniquely written as * = m - 2° where m is an odd integer and e is an
integer. mantissa(x) returns m.

Example 1:

a=round (Pi,20,RN);
e=exponent (a) ;
m=mantissa(a);

m;

411775

> a-mx27e;

0

See also: exponent (8.49)), precision (8.105)

>
>
>
>

8.83 mid

Name: mid
gives the middle of an interval.

Usage:

mid(7) : range — constant
mid(z) : constant — constant

Parameters:

e [is an interval.

e 1 is a real number.
Description:

e Returns the middle of the interval I. If the middle is not exactly representable at the current
precision, the value is returned as an unevaluated expression.

68

e When called on a real number x, mid considers it as an interval formed of a single point: [x, x].
In other words, mid behaves like the identity.

Example 1:

> mid([1;3]);
2

> mid(17);

17

See also: inf (8.67), sup (8.142)

8.84 midpointmode

Name: midpointmode
global variable controlling the way intervals are displayed.

Description:

e midpointmode is a global variable. When its value is off, intervals are displayed as usual (with
the form [a;b]). When its value is on, and if a and b have the same first significant digits, the
interval in displayed in a way that lets one immediately see the common digits of the two bounds.

e This mode is supported only with display set to decimal. In other modes of display, midpoint-
mode value is simply ignored.

Example 1:
> a = round(Pi,30,RD);
> b = round(Pi,30,RU);
>d = [a,b]l;
> d;

’

[0.31415926516056060791015625e1;0.31415926553308963775634765625¢e1]
> midpointmode=on!;

> d;

0.31415926571/5%el

See also: on ({8.92)), off (8.91)

8.85 minus

Name: —
substraction function

Usage:
functionl — function2 : (function, function) — function
Parameters:
e functionl and function2 represent functions
Description:

e — represents the substraction (function) on reals. The expression functionl — function? stands for
the function composed of the substraction function and the two functions functionl and function?2,
where functionl is the subtrahent and function2 the substractor.

Example 1:

69

>5 - 2;

Example 2:

>x - 2;
(-2) + x

Example 3:

> X - X;
0

Example 4:

> diff(sin(x) - exp(x));
cos(x) - exp(x)

See also: + (8.98)), * (8.806]), / (8.35)), = (8.102)

8.86 mult

Name: *
multiplication function

Usage:
functionl x function2 : (function, function) — function
Parameters:
e functionl and function?2 represent functions
Description:

e x represents the multiplication (function) on reals. The expression functionl x function? stands
for the function composed of the multiplication function and the two functions functionl and
function2.

Example 1:

> 5 x 2;
10

Example 2:

> x * 2;
X * 2

Example 4:

> diff(sin(x) * exp(x));
sin(x) * exp(x) + exp(x) * cos(x)

See also: + (8.98), — (8.85), / (8.35), ~ (8.102)

70

8.87 neq

Name: !=
negated equality test operator

Usage:
exprl !'= expr? : (any type, any type) — boolean
Parameters:
e exprl and expr2 represent expressions
Description:

e The operator != evaluates to true iff its operands expr! and expr2 are syntactically unequal and
both different from error or constant expressions that evaluate to two different floating-point
number with the global precision prec. The user should be aware of the fact that because of
floating-point evaluation, the operator != is not exactly the same as the negation of the mathe-
matical equality.

Note that the expressions !(expr! != expr2) and expr! == expr2 do not evaluate to the same
boolean value. See error for details.

Example 1:

> "Hello" != "Hello";
false

> "Hello" != "Salut";
true

> "Hello" != b;

true

>5 +x =5+ x;
false

Example 2:

> 1 1= exp(0);

false

> asin(1) * 2 != pi;
false

> exp(B5) !'= log(4);
true

Example 3:

> prec = 12;

The precision has been set to 12 bits.
> 16384 !'= 16385;

false

Example 4:

> error != error;
false

See also: == (8.40), > (8.59), >= (8.58), <= (8.73)), < (8-81), ! (8-89), && (B.6), || (8.93), error (3.43),
prec (8.104)

71

8.88 nop

Name: nop
no operation
Usage:
nop : void — void
Description:

e The command nop does nothing. This means it is an explicit parse element in the Sollya language
that finally does not produce any result or side-effect.

e The keyword nop is implicit in some procedure definitions. Procedures without imperative body
get parsed as if they had an imperative body containing one nop statement.

Example 1:

> nop;

Example 2:

> succ = proc(n) { return n + 1; };
> succ;

proc(n)

begin

nop;

return (n) + (1);

end

> succ(b);

6

See also: proc (8.112))

8.89 not

Name: !
boolean NOT operator
Usage:
! expr : boolean — boolean
Parameters:
e expr represents a boolean expression
Description:

e ! evaluates to the boolean NOT of the boolean expression ezpr. ! expr evaluates to true iff expr
does not evaluate to true.

Example 1:

> | false;
true

Example 2:

> 1 (1 == exp(0));
false

See also: && (B.6)), || (8.93)

72

8.90 numerator

Name: numerator
gives the numerator of an expression

Usage:
numerator(ezpr) : function — function
Parameters:
e expr represents an expression
Description:

o If expr represents a fraction exprl /expr2, numerator(expr) returns the numerator of this fraction,
i.e. exprl.
If expr represents something else, numerator(ezpr) returns the expression itself, i.e. expr.

Note that for all expressions ezpr, numerator(expr) / denominator(expr) is equal to expr.

Example 1:

> numerator(5/3);
5

Example 2:

> numerator (exp(x)) ;
exp (x)

Example 3:

> a = 5/3;

> b = numerator(a)/denominator(a);
> print(a);

5/ 3

> print(b);

5/ 3

Example 4:

> a = exp(x/3);

> b = numerator(a)/denominator(a);
> print(a);

exp(x / 3)

> print(b);

exp(x / 3)

See also: denominator (8.28))

8.91 off

Name: off
special value for certain global variables.

Description:

e off is a special value used to deactivate certain functionnalities of Sollya (namely canonical,
timing, fullparentheses, midpointmode).

73

e As any value it can be affected to a variable and stored in lists.

Example 1:

> canonical=on;

Canonical automatic printing output has been activated.
> p=1+x+x"2;

> mode=off;

> P;

1 +x+ x72

> canonical=mode;

Canonical automatic printing output has been deactivated.
>p;

1 +x*x (1 +x)

See also: on (8.92), canonical (8.17)), timing (8.148), fullparentheses (8.56]), midpointmode ({8.84)

8.92 on

Name: on
special value for certain global variables.

Description:

e on is a special value used to activate certain functionnalities of Sollya (namely canonical, timing,
fullparentheses, midpointmode).

e As any value it can be affected to a variable and stored in lists.

Example 1:

> p=1+x+x"2;

> mode=on;

> P;

1+x* (1+x)

> canonical=mode;

Canonical automatic printing output has been activated.
> p;

1 +x+ x72

See also: off (8.91)), canonical (8.17)), timing (8.148)), fullparentheses (8.56), midpointmode (8.84)

8.93 or

Name: ||
boolean OR, operator

Usage:
exprl || expr2 : (boolean, boolean) — boolean
Parameters:
e cxprl and expr2 represent boolean expressions
Description:

e || evaluates to the boolean OR of the two boolean expressions expr! and ezpr2. || evaluates to true
iff at least one of expr! or expr2 evaluate to true.

74

Example 1:

> false || false;
false

Example 2:

> (1 == exp(0)) |l (0 == log(1));
true

See also: && (B8.6), ! (8.89)

8.94 parse

Name: parse
parses an expression contained in a string

Usage:
parse(string) : string — function | error
Parameters:
e string represents a character sequence
Description:

e parse(string) parses the character sequence string containing an expression built on constants and
base functions.
If the character sequence does not contain a well-defined expression, a warning is displayed indi-
cating a syntax error and parse returns a error of type error.

Example 1:

> parse("exp(x)");
exp (x)

Example 2:

> verbosity = 1!;

> parse("5 + + 3");

Warning: syntax error, unexpected PLUSTOKEN. Will try to continue parsing (expec
ting ";"). May leak memory.

Warning: the string "5 + + 3" could not be parsed by the miniparser.

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.

error

See also: execute (8.45), readfile (8.118)

8.95 perturb

Name: perturb
indicates random perturbation of sampling points for externalplot

Usage:

perturb : perturb

(0]

Description:

e The use of perturb in the command externalplot enables the addition of some random noise
around each sampling point in externalplot.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -1
mpfr");

> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.50)), absolute (8.2)), relative (8.120), bashexecute (38.14))

8.96 pi
Name: pi
the constant .
Description:
e pi is the constant 7, defined as half the period of sine and cosine.

e In Sollya, pi is considered as a 0-ary function. This way, the constant is not evaluated at the time
of its definition but at the time of its use. For instance, when you define a constant or a function
relating to 7, the current precision at the time of the definition does not matter. What is important
is the current precision when you evaluate the function or the constant value.

e Remark that when you define an interval, the bounds are first evaluated and then the interval is
defined. In this case, pi will be evaluated as any other constant value at the definition time of the
interval, thus using the current precision at this time.

Example 1:

> verbosity=1!; prec=12!;

> a = 2%pi;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.

0.62832e1

> prec=20!;

> a;

Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.

0.62831879e1

Example 2:

> prec=12!;
>d = [pi; 5];
> d;
[0.31406e1;5]
> prec=20!;

> d;
[0.31406e1;5]

See also: cos ([8.23)), sin (8.135])

76

8.97

Name:

plot
plot

plots one or several functions

Usage:

plot(f1, ... ,fn, I) : (function, ... ,function, range) — void
plot(f1,fn, I, file, name) : (function, ... ,function, range, file, string) — void
plot(f1, ... ,fn, I, postscript, name) : (function, ... ,(function, range, postscript, string) — void
plot(f1, ... ,fn, I, postscriptfile, name) : (function, ... [function, range, postscriptfile, string) — void

plot(L, I) : (list, range) — v0|d
plot(L, I, file, name) (list, range, file, string) — void
plot(L, I, postscript, name) : (list, range, postscript, string) — void
plot(L, I, postscriptfile, name) : (list, range, postscriptfile, string) — void

Parameters:

e f1, ..., fn are functions to be plotted.

L is a list of functions to be plotted.
I is the interval where the functions have to be plotted.

name is a string representing the name of a file.

Description:

This command plots one or several functions f1, ... ,fn on an interval I. Functions can be either
given as parameters of plot or as a list L which elements are functions. Functions are plotted on
the same graphic with different colors.

If L contains an element that is not a function (or a constant), an error occurs.

plot relies on the value of global variable points. Let n be the value of this variable. The algorithm
is the following: each function is evaluated at n evenly distributed points in I. At each point, the
computed value is a faithful rounding of the exact value with a sufficiently big precision. Each
point is finally plotted. This avoid numerical artefacts such as critical cancellations.

You can save the graphic either as a data file or as a postscript file.

If you use argument file with a string name, Sollya will save a data file called name.dat and
a gnuplot directives file called name.p. Invoking gnuplot on name.p will plots datas stored in
name.dat.

If you use argument postscript with a string name, Sollya will save a postscript file called name.eps
representing your graphic.

If you use argument postscriptfile with a string name, Sollya will produce the corresponding
name.dat, name.p and name.eps.

This command uses gnuplot to produce the final graphic. If your terminal is not graphic (typically
if you use Sollya by ssh without -X) gnuplot should be able to detect it and produce an ASCII-art
version on the standard output. If it is not the case, you can either store the graphic in a postscript
file to view it locally, or use asciiplot command.

If every function is constant, plot will not plot them but just display their value.

If the interval is reduced to a single point, plot will just display the value of the functions at this
point.

Example 1:

7

> plot(sin(x),0,cos(x), [-Pi,Pi]);

Example 2:

> plot(sin(x),0,cos(x),[-Pi,Pi],postscriptfile,"plotSinCos");

Example 3:

> plot(exp(0), sin(1), [0;1]);
1
0.841470984807896506652502321630298999622563060798373

Example 4:

> plot(sin(x), cos(x), [1;11);
0.841470984807896506652502321630298999622563060798373
0.540302305868139717400936607442976603732310420617923

See also: externalplot (8.50)), asciiplot (8.8), file (8.53), postscript (8.100), postscriptfile (8.101)

8.98 plus

Name: +
addition function

Usage:
functionl + function2 : (function, function) — function
Parameters:
e functionl and function2 represent functions
Description:

e + represents the addition (function) on reals. The expression functionl + function2 stands for the
function composed of the addition function and the two functions function! and function2.

Example 1:

> 1 + 2;
3

Example 2:

> x + 2
2 +x

Example 3:

> x + X
X % 2

Example 4:

> diff(sin(x) + exp(x));
cos(x) + exp(x)

See also: — (8.85)), (8.86]), / (8-35)), = (8.102)

78

8.99 points

Name: points
controls the number of points chosen by Sollya in certain commands.

Description:

e points is a global variable. Its value represents the number of points used in numerical algorithms
of Sollya (namely dirtyinfnorm, dirtyintegral, dirtyfindzeros, plot).

Example 1:

> f=x"2*sin(1/x);

> points=10;

The number of points has been set to 10.

> dirtyfindzeros(f, [0;1]1);

[10, 0.31830988618379067153776752674502872406891929148091789]

> points=100;

The number of points has been set to 100.

> dirtyfindzeros(f, [0;1]);

[10, 0.244853758602915901182898097496175941591476378062242989%¢e-1, 0.353677651315
322968375297251938920804521021434978790232e-1, 0.4547284088339866736253821810643
2674866988470211558935e-1, 0.530516476972984452562945877908381206781532152468192
029e-1, 0.636619772367581343075535053490057448137838582961835781e-1, 0.774999999
999999999999999999999999999999999999991344519e-1, 0.1061032953945968905125891755
81676241356306430493638406, 0.15915494309189533576888376337251436203445964574045
8945, 0.31830988618379067153776752674502872406891929148091789]]

See also: dirtyinfnorm (8.32), dirtyintegral (8.33), dirtyfindzeros (8.31]), plot

8.100 postscript

Name: postscript
special value for commands plot and externalplot

Description:

e postscript is a special value used in commands plot and externalplot to save the result of the
command in a postscript file.

e As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscript;
> name="plotSinCos";
> plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);

See also: externalplot (8.50), plot (8.97), file (8.53), postscriptfile (8.101))

8.101 postscriptfile

Name: postscriptfile
special value for commands plot and externalplot

Description:

e postscriptfile is a special value used in commands plot and externalplot to save the result of
the command in a data file and a postscript file.

79

e As any value it can be affected to a variable and stored in lists.

Example 1:

> savemode=postscriptfile;
> name="plotSinCos";
> plot(sin(x),0,cos(x), [-Pi,Pi],savemode, name);

See also: externalplot (8.50), plot (8.97), file (8.53)), postscript (8.100)

8.102 power

Name: ~
power function

Usage:
functionl ~ function?2 : (function, function) — function
Parameters:
e functionl and function2 represent functions
Description:

e ~ represents the power (function) on reals. The expression function! ~ function2 stands for the
function composed of the power function and the two functions function! and function2, where
functionl is the base and function2 the exponent. If function?2 is a constant integer, ~ is defined
on negative values of functionl. Otherwise " is defined as e¥1"Z.

Example 1:

>5 7 2;
25

Example 2:

>x T 2
x"2

Example 3:

>3 " (-5);
0.411522633744855967078189300411522633744855967078186e-2

Example 4:

> (-3) © (-2.5);
@NaN@

Example 5:

> diff(sin(x) ~ exp(x));
sin(x) "exp(x) * ((cos(x) * exp(x)) / sin(x) + exp(x) * log(sin(x)))

See also: + (8.98)), — (8.85)), = (8.86]), / (8.35)

80

8.103 powers

Name: powers
special value for global state display

Description:

e powers is a special value used for the global state display. If the global state display is equal
to powers, all data will be output in dyadic notation with numbers displayed in a Maple and
PARI/GP compatible format.

As any value it can be affected to a variable and stored in lists.

See also: decimal ({8.25)), dyadic (8.39), hexadecimal (8.62)), binary (8.15))

8.104 prec

Name: prec
controls the precision used in numerical computations.

Description:

e prec is a global variable. Its value represents the precision of the floating-point format used in
numerical computations.

e A lot of commands try to adapt their intern precision in order to have approximately n correct
bits in output, where n is the value of prec.

Example 1:

> display=binary!;

> prec=50;

The precision has been set to 50 bits.

> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011011_2 * 27(2)

> prec=100;

The precision has been set to 100 bits.

> dirtyinfnorm(exp(x), [1;2]);
1.110110001110011001001011100011010100110111011010110111001100001100111010001110
11101000100000011011_2 * 27(2)

8.105 precision

Name: precision
returns the precision necessary to represent a number.

Usage:
precision(z) : constant — integer
Parameters:
e 1 is a dyadic number.
Description:
e precision(x) is by definition |z| if x equals 0, NaN, or Inf.

e If z is not zero, it can be uniquely written as * = m - 2° where m is an odd integer and e is an
integer. precision(x) returns the number of bits necessary to write m (e.g. [logy(m)]).

Example 1:

81

> a=round (Pi,20,RN);
> precision(a);

19

> m=mantissa(a);

> ceil(log2(m));

19

See also: mantissa (8.82)), exponent ({8.49)

8.106 prepend

Name: .:
add an element at the beginning of a list.

Usage:
z.:L : (any type, list) — list

Parameters:

e 1 is an object of any type.

e [is a list (possibly empty).
Description:

e .: adds the element = at the beginning of the list L.

e Note that since x may be of any type, it can be in particular a list.

Example 1:

>1.:[12,3,41]1;
(11, 2, 3, 411

Example 2:

> [11,2,31].:[14,5,61];
Crole, 2, 311, 4, 5, 6]

Example 3:
> 1.:[011];
C111]

See also: :. (8.7), @ (8.21))

8.107 print

Name: print
prints an expression

Usage:
print(exprl,...,exprn) : (any type,..., any type) — void
print(expri,...,exprn) > filename : (any type,..., any type, string) — void
print(exprl,...,exprn) >> filename : (any type,...,any type, string) — void
Parameters:

e cxpr represents an expression

82

e filename represents a character sequence indicating a file name
Description:

e print(ezpri,...,exprn) prints the expressions expr! through exprn separated by spaces and followed
by a newline.

”

If a second argument filename is given after a single ”>”, the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ”>>" is given, the output will be appended to the file filename.

The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).

Remark that if one of the expressions expri given in argument is of type string, the character
sequence ezxpri evaluates to is displayed. However, if expri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by quotes (’). Nevertheless, escape sequences used upon defining character
sequences are interpreted immediately.

Example 1:

> print(x + 2 + exp(sin(x)));

x + 2 + exp(sin(x))

> print("Hello","world");

Hello world

> print("Hello","you", 4 + 3, "other persons.");
Hello you 7 other persons.

Example 2:

> print("Hello");

Hello

> print([|"Hello"|1);
[|"Hello"|]

> s = "Hello";

> print(s, [Isl|]);

Hello [|"Hello"|]

> t = "Hello\tyou";

> print(t,[It]]);

Hello you [|"Hello you"|]

Example 3:

> print(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))

Example 4:

> print(x + 2 + exp(sin(x))) >> "foo.sol";

Example 5:

83

> display = decimal;

Display mode is decimal numbers.

a = evaluate(sin(pi * x), 0.25);

b = evaluate(sin(pi * x), [0.25; 0.25 + 1b-50]);

print(a);
.707106781186547524400844362104849039284835937688470740971
display = binary;

Display mode is binary numbers.

> print(a);
1.011010100000100111100110011001111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 27(-1)

> display = hexadecimal;

Display mode is hexadecimal numbers.

> print(a);

0xb.504£333f9de6484597d89b3754abe9f1d6£60ba88p—4

> display = dyadic;

Display mode is dyadic numbers.

> print(a);
33070006991101558613323983488220944360067107133265b-165

> display = powers;

Display mode is dyadic numbers in integer-power-of-2 notation.
> print(a);
33070006991101558613323983488220944360067107133265 * 2~ (-165)
> display = decimal;

Display mode is decimal numbers.

> midpointmode = off;

Midpoint mode has been deactivated.

> print(b);
[0.707106781186547524400844362104849039284835937688449;0.70710678118654949743721
7825175573477826462744170488]

> midpointmode = on;

Midpoint mode has been activated.

> print(b);

0.7071067811865477/9~

> display = dyadic;

Display mode is dyadic numbers.

> print(b);
[2066875436943847413332748968013809022504194195829b-161;165350034955508254441962
37019385936414432675156571b-164]

> display = decimal;

Display mode is decimal numbers.

> autosimplify = off;

Automatic pure tree simplification has been deactivated.

> fullparentheses = off;

Full parentheses mode has been deactivated.

> print(x + x * ((x + 1) + 1));

x+x*x (x+1+1)

> fullparentheses = on;

Full parentheses mode has been activated.

> print(x + x * ((x + 1) + 1));

x+ (x*x ((x+ 1)+ 1))

See also: write (8.155)), printexpansion (8.108]), printhexa (8.110), printfloat (8.109), printxml
(8.111)), readfile (8.118)), autosimplify (8.13)), display (8.34]), midpointmode (8.84), fullparenthe-
ses ({8.50)), evaluate (8.44)

v O V Vv V

84

8.108 printexpansion

Name: printexpansion
prints a polynomial in Horner form with its coefficients written as a expansions of double precision num-
bers

Usage:
printexpansion(polynomial) : (function) — void
Parameters:
e polynomial represents the polynomial to be printed
Description:

e The command printexpansion prints the polynomial polynomial in Horner form writing its coef-
ficients as expansions of double precision numbers. The double precision numbers themselves are
displayed in hexadecimal memory notation (see printhexa).

If some of the coefficients of the polynomial polynomial are not floating-point constants but constant
expressions, they are evaluated to floating-point constants using the global precision prec. If a
rounding occurs in this evaluation, a warning is displayed.

If the exponent range of double precision is not sufficient to display all the mantissa bits of a
coefficient, the coefficient is displayed rounded and a warning is displayed.

If the argument polynomial does not a polynomial, nothing but a warning or a newline is displayed.
Constants can be displayed using printexpansion since they are polynomials of degree 0.

Example 1:

> printexpansion(roundcoefficients(taylor(exp(x),5,0),[IDD...[1));
0x3f£0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x * ((O
x3fc5555555555555 + 0x3c65555555555555) + x * ((0x3fab555555555555 + 0x3c4555555
5555555) + x * (0x3f81111111111111 + 0x3c01111111111111)))))

Example 2:

> printexpansion(remez(exp(x),5,[-1;11));

(0x3ff0002eec887685 + 0x3c691f5f67e9bc02 + 0xb8dadedal3533abal) + x * ((0x3£ff0002

8359b7449 + 0x3c96606599d49aff + 0xb9341c0421ad8f65 + 0x35d8000000000000) + x *
((0x3fdff2d7eb6ec686b + 0x3c7bdc5f3e3cb6baa + 0xb8f46ddeed38d34c) + x * ((0x3fcb4d
6732dfead0 + 0xbc4115bd475b2c9f + 0x38d2035ba90e783d) + x * ((0x3fa66c209b813377
+ 0x3c328b7f6cfI9b6de + 0x38dcc2cb5ed93c15 + 0xb578000000000000) + x * (0x3f81eb
542ba3ef82 + 0xbc2bd7453be2c03c + 0xb8c7564467912508)))))

Example 3:

> verbosity = 1!;

> prec = 3500!;

> printexpansion(pi);

(0x400921fb54442d18 + 0x3cala62633145c07 + 0xb92f1976b7ed8fbc + 0x35c4cf98e80417
7d + 0x32631d89cd9128a5 + 0x2ec0£31c6809bbdf + 0x2b5519b3cd3a431b + 0x27e8158536
£92f8a + 0x246ba7f09ab6b6a® + Oxaleedd0dbd2544cf + 0x1d779fblbd1310ba + Oxlala63
7ed6bObff6 + 0x96aa485fcad0908e + 0x933e501295d98169 + 0x8fd160dbee83b4e0 + 0x8c
59b6d799ael131c + 0x08f6cf70801f2e28 + 0x05963bf0598da483 + 0x023871574e69a459 +

0x8000000005702db3 + 0x8000000000000000)

Warning: the expansion is not complete because of the limited exponent range of

double precision.

Warning: rounding occurred while printing.

See also: printhexa (8.110)), horner (8.65)), print (8.107)), prec (8.104), remez (8.121)), taylor (8.146]),
roundcoefficients ([8.128))

85

8.109 printfloat

Name: printfloat
prints a constant value as a hexadecimal single precision number

Usage:
printfloat(constant) : constant — void
Parameters:
e constant represents a constant
Description:

e Prints a constant value as a hexadecimal number on 8 hexadecimal digits. The hexadecimal number
represents the integer equivalent to the 32 bit memory representation of the constant considered
as a single precision number.

If the constant value does not hold on a single precision number, it is first rounded to the nearest
single precision number before displayed. A warning is displayed in this case.

Example 1:

> printfloat(3);
0x40400000

Example 2:

> prec=100!;

> verbosity = 1!;

> printfloat(exp(5));

Warning: the given expression is not a constant but an expression to evaluate.
Warning: rounding occurred before printing a value as a simple.

0x431469c5

See also: printhexa (8.110)

8.110 printhexa

Name: printhexa
prints a constant value as a hexadecimal double precision number

Usage:
printhexa(constant) : constant — void
Parameters:
e constant represents a constant
Description:

e Prints a constant value as a hexadecimal number on 16 hexadecimal digits. The hexadecimal
number represents the integer equivalent to the 64 bit memory representation of the constant
considered as a double precision number.

If the constant value does not hold on a double precision number, it is first rounded to the nearest
double precision number before displayed. A warning is displayed in this case.

Example 1:

86

> printhexa(3);
0x4008000000000000

Example 2:

> prec=100!;

> verbosity = 1!;

> printhexa(exp(5));

Warning: the given expression is not a constant but an expression to evaluate.
Warning: rounding occurred before printing a value as a double.
0x40628d389970338f

See also: printfloat (8.109)), printexpansion (8.108|)

8.111 printxml

Name: printxml
prints an expression as an MathML-Content-Tree

Usage:
printxml(expr) : function — void
printxml(expr) > filename : (function, string) — void
printxml(expr) > > filename : (function, string) — void
Parameters:

e cxpr represents a functional expression
e filename represents a character sequence indicating a file name
Description:

e printxml(expr) prints the functional expression ezpr as a tree of MathML Content Definition
Markups. This XML tree can be re-read in external tools or by usage of the readxml command.

If a second argument filename is given after a single >, the MathML tree is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double > > is given, the output will be appended to the file filename.

Example 1:

87

> printxml(x + 2 + exp(sin(x)));

<?xml version="1.0" encoding="UTF-8"7>

<!-- generated by sollya: http://sollya.gforge.inria.fr/ -->

<!-- syntax: printxml(...); exemple: printxml(x"2-2*x+5); -->

<?xml-stylesheet type="text/xsl" href="http://perso.ens-lyon.fr/nicolas. jourdan/
mathmlc2p-web.xsl"?>

<?7xml-stylesheet type="text/xsl" href="mathmlc2p-web.xsl"?>

<!-- This stylesheet allows direct web browsing of MathML-c XML files (http:// o
r file://) -—>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>

<annotation-xml encoding="MathML-Content">
<lambda>

<bvar><ci> x </ci></bvar>

<apply>

<apply>

<plus/>

<apply>

<plus/>

<ci> x </ci>

<cn type="integer" base="10"> 2 </cn>
</apply>

<apply>

<exp/>

<apply>

<sin/>

<ci> x </ci>

</apply>

</apply>

</apply>

</apply>

</lambda>

</annotation-xml>

<annotation encoding="sollya/text">(x + 1bl) + exp(sin(x))</annotation>
</semantics>

</math>

Example 2:

> printxml(x + 2 + exp(sin(x))) > "foo.xml";

Example 3:

> printxml(x + 2 + exp(sin(x))) >> "foo.xml";

See also: readxml (8.119)), print (8.107)), write (8.155]

8.112 proc

Name: proc
defines a Sollya procedure

Usage:

88

proc(formal parameter!, formal parameter2,..., formal parameter n) begin procedure body end : void
— procedure
proc(formal parameterl, formal parameter,..., formal parameter n) begin procedure body return
expression; end : any type — procedure

Parameters:

o formal parameterl, formal parameter? through formal parameter n represent identifiers used as
formal parameters

e procedure body represents the imperative statements in the body of the procedure
e cxpression represents the expression proc shall evaluate to
Description:

e The proc keyword allows for defining procedures in the Sollya language. These procedures are
common Sollya objects that can be applied to actual parameters after definition. Upon such an
application, the Sollya interpreter applies the actual parameters to the formal parameters formal
parameter] through formal parameter n and executes the procedure body. The procedure applied
to actual parameters evaluates then to the expression expression in the return statement after
the procedure body or to void, if no return statement is given (i.e. a return void statement is
implicitly given).

e Sollya procedures defined by proc have no name. They can be bound to an identifier by assigning
the procedure object a proc expression produces to an identifier. However, it is possible to use
procedures without giving them any name. For instance, Sollya procedures, i.e. procedure objects,
can be elements of lists. They can even be given as an argument to other internal Sollya procedures.
See also procedure on this subject.

e Upon definition of a Sollya procedure using proc, no type check is performed. More precisely, the
statements in procedure body are merely parsed but not interpreted upon procedure definition with
proc. Type checks are performed once the procedure is applied to actual parameters or to void.
At this time, it is checked whether the number of actual parameters corresponds to the number
of formal parameters. Type checks are further performed upon execution of each statement in
procedure body and upon evaluation of the expression ezpression to be returned.

Procedures defined by proc containing a quit or restart command cannot be executed (i.e. ap-
plied). Upon application of a procedure, the Sollya interpreter checks beforehand for such a state-
ment. If one is found, the application of the procedure to its arguments evaluates to error. A
warning is displayed. Remark that in contrast to other type or semantical correctness checks, this
check is really performed before interpreting any other statement in body of the procedure.

e By means provided by the var keyword, it is possible to declare local variables and thus to have
full support of recursive procedures. This means a procedure defined using proc may contain in its
procedure body an application of itself to some actual parameters: it suffices to assign the procedure
(object) to an identifier with an appropriate name.

e Sollya procedures defined using proc may return other procedures. Further procedure body may
contain assignments of locally defined procedure objects to identifiers. See var for the particular
behaviour of local and global variables.

e The expression ezpression returned by a procedure is evaluated with regard to Sollya commands,
procedures and external procedures. Simplification may be performed. However, an application of
a procedure defined by proc to actual parameters evaluates to the expression expression that may
contain the free global variable or that may be composed.

Example 1:

89

> succ = proc(n) { return n + 1; };
> succ(5);

6

> 3 + succ(0);

4

> succ;

proc(n)

begin

nop;

return (n) + (1);
end

Example 2:

> add = proc(m,n) { var res; res := m + n; return res; 1};

> add(5,6);

11

> add;

proc(m, n)

begin

var res;

res := (m) + (n);

return res;

end

> verbosity = 1!;

> add(3);

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.
error

> add(true,false);

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.
Warning: the given expression or command could not be handled.
Warning: the given expression or command could not be handled.

error

Example 3:

> succ = proc(n) { return n + 1; };
> succ(b);

6

> succ(x);

1 +x

Example 4:

90

> hey = proc() { print("Hello world."); };
> hey();

Hello world.

> print (hey());

Hello world.

void

> hey;

proc()

begin

print("Hello world.");
return void;

end

Example 5:

> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };

> fac(5);

120

> fac(11);

39916800

> fac;

proc(n)

begin

var res;

if (n) == (0) then

res := 1

else

res := (n) * (fac((m) - (1)));
return res;

end

Example 6:

> myprocs = [| proc(m,n) { return m + n; }, proc(m,n) { returnm - n; } |];
> (myprocs[0]) (5,6);

11

> (myprocs[1])(5,6);

-1

succ = proc(n) { return n + 1; };

pred = proc(n) { return n - 1; };

applier = proc(p,n) { return p(n); };

applier(succ,5);

applier(pred,5);

S VvV OV V VYV

Example 7:

91

> verbosity = 1!;

> myquit = proc(n) { print(n); quit; };

> myquit;

proc(n)

begin

print(n);

quit;

return void;

end

> myquit(5);

Warning: a quit or restart command may not be part of a procedure body.
The procedure will not be executed.

Warning: an error occured while executing a procedure.
Warning: the given expression or command could not be handled.
error

Example 8:

> printsucc = proc(n) { var succ; succ = proc(n) { return n + 1; }; print("Succe
ssor of",n,"is",succ(n)); };

> printsucc(5);

Successor of 5 is 6

Example 9:

> makeadd = proc(n) { var add; print("n =",n); add = proc(m,n) { return n + m; }
; return add; };

> makeadd(4);

n=4

proc(m, n)

begin

nop;

return (n) + (m);
end

> (makeadd(4)) (5,6);
n=4

11

See also: return (8.124)), externalproc (8.51)), void (8.153)), quit (8.114]), restart (8.123)), var (8.151])

8.113 procedure

Name: procedure
defines and assigns a Sollya procedure

Usage:

procedure identifier(formal parameter!, formal parameter,..., formal parameter n) begin procedure
body end : void — void
procedure identifier(formal parameter!, formal parameter,..., formal parameter n) begin procedure
body return expression; end : any type — void

Parameters:
e identifier represents the name of the procedure to be defined and assigned

o formal parameterl, formal parameter2 through formal parameter n represent identifiers used as
formal parameters

92

procedure body represents the imperative statements in the body of the procedure

expression represents the expression procedure shall evaluate to

Description:

The procedure keyword allows for defining and assigning procedures in the Sollya language. It is
an abbreviation to a procedure definition using proc with the same formal parameters, procedure
body and return-expression followed by an assignment of the procedure (object) to the identifier
identifier. In particular, all rules concerning local variables declared using the var keyword apply
for procedure.

Example 1:

SV OO V VvV

>

proc(n)

begin

nop;

return (n) + (1);
end

procedure succ(n) { return n + 1; };
succ(5);

3 + succ(0);

succ;

See also: proc (8.112)), var (8.151))

8.114 quit

Name: quit

quits Sollya
Usage:

quit : void — void
Description:

e The command quit, when executed abandons the execution of a Sollya script and leaves the Sollya
interpreter unless the quit command is executed in a Sollya script read into a main Sollya script
by execute or #include.

Upon exiting the Sollya interpreter, all state is thrown away, all memory is deallocated, all bound
libraries are unbound and the temporary files produced by plot and externalplot are deleted.
If the quit command does not lead to the abandon of the Sollya interpreter, a warning is displayed.
Example 1:
> quit;

See also: restart (8.123]), execute (8.45)), plot (8.97), externalplot (8.50))

8.115 range

Name: range
keyword representing a range type

Usage:

93

range : type type

Description:

range represents the range type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like range cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.51]), boolean ({8.16), constant (8.22)), function (8.57), integer (8.69), list
of (8.76)), string (8.139))

8.116 rationalapprox

Name: rationalapprox
returns a fraction close to a given number.

Usage:

rationalapprox(z,n) : (constant, integer) — function

Parameters:

z is a number to approximate.

n is a integer (representing a format).

Description:

rationalapprox(z,n) returns a constant function of the form a/b where a and b are integers.
The value a/b is an approximation of z. The quality of this approximation is determined by the
parameter n that indicates the number of correct bits that a/b should have.

The command is not safe in the sense that it is not ensured that the error between a/b and z is
less than 277,

The following algorithm is used: z is first rounded downwards and upwards to a format of n bits,
thus obtaining an interval [x;, a,]. This interval is then developped into a continued fraction as
far as the representation is the same for every elements of [x;, x,]. The corresponding fraction is
returned.

Since rational numbers are not a primitive object of Sollya, the fraction is returned as a constant
function. It can be quite amazing, because Sollya immediately simplifies a constant function by
evaluating it when the constant has to be displayed. To avoid this, you can use print (that displays
the expression representing the constant and not the constant itself) or the commands numerator
and denominator.

Example 1:
> pil0 = rationalapprox(Pi,10);
> pib0 = rationalapprox(Pi,50);
> pil00 = rationalapprox(Pi,100);
> print(pil0, ": ", simplify(floor(-log2(abs(pil0-Pi)/Pi))), "bits.");
22 / 7 : 11 bits.
> print(pib0, ": ", simplify(floor(-log2(abs(pi50-Pi)/Pi))), "bits.");
90982559 / 28960648 : 50 bits.
> print(pi100, ": ", simplify(floor(-log2(abs(pil00-Pi)/Pi))), "bits.");

4850225745369133 / 1543874804974140 : 101 bits.

Example 2:

94

> a=0.1;
> b=rationalapprox(a,4);
> numerator(b); denominator(b);

1
10
> print(simplify(floor(-log2(abs((b-a)/a)))), "bits.");
166 bits.
See also: print (8.107), numerator (8.90), denominator (8.28))
8.117 rd
Name: RD

constant representing rounding-downwards mode.

Description:

e RD is used in command round to specify that the value x must be rounded to the greatest
floating-point number y such that y < x.

Example 1:

> display=binary!;
> round(Pi,20,RD);
1.1001001000011111101_2 * 2~ (1)

See also: RZ (8.131), RU (8.130), RN ({8.126]), round (_8.127)

8.118 readfile

Name: readfile
reads the content of a file into a string variable

Usage:
readfile(filename) : string — string
Parameters:
e filename represents a character sequence indicating a file name
Description:

e readfile opens the file indicated by filename, reads it and puts its contents in a character sequence
of type string that is returned.
If the file indicated by filename cannot be opened for reading, a warning is displayed and readfile
evaluates to an error variable of type error.

Example 1:

> print("Hello world") > "myfile.txt";
> t = readfile("myfile.txt");

>t

Hello world

Example 2:

95

> verbosity=1!;

> readfile("afile.txt");

Warning: the file "afile.txt" could not be opened for reading.

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.

error

See also: parse (8.94), execute (8.45)), write (8.155)), print (8.107)

8.119 readxml

Name: readxml
reads an expression written as a MathML-Content-Tree in a file

Usage:
readxml(filename) : string — function | error
Parameters:
e filename represents a character sequence indicating a file name
Description:

e readxml(filename) reads the first occurrence of a lambda application with one bounded variable

on applications of the supported basic functions in file filename and returns it as a Sollya functional
expression.
If the file filename does not contain a valid MathML-Content tree, readxml tries to find an ”an-
notation encoding” markup of type ”sollya/text”. If this annotation contains a character sequence
parseable by parse, readxml returns that expression. Otherwise readxml displays a warning and
returns an error variable of type error.

Example 1:

> readxml ("readxmlexample.xml");
2 + x + exp(sin(x))

See also: printxml (8.111)), readfile (8.118), parse (8.94)

8.120 relative

Name: perturb
indicates a relative error for externalplot

Usage:
perturb : absolute|relative
Description:

e The use of perturb in the command externalplot indicates that during plotting in externalplot
a relative error is to be considered.

See externalplot for details.

Example 1:

> bashexecute("gcc -fPIC -c externalplotexample.c");

> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -1
mpfr");

> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);

See also: externalplot (8.50), absolute (8.2)), bashexecute ([8.14)

96

8.121 remez

Name: remez
computes the minimax of a function on an interval.

Usage:

remez(f, n, range, w, quality) : (function, integer, range, function, constant) — function
remez(f, L, range, w, quality) : (function, list, range, function, constant) — function

Parameters:

f is the function to be approximated

n is the degree of the polynomial that must approximate f

L is a list of monomials that can be used to represent the polynomial that must approximate f
range is the interval where the function must be approximated

w (optional) is a weight function. Default is 1.

quality (optional) is a parameter that controls the quality of the returned polynomial p, with respect
to the exact minimax p*. Default is le-5.

Description:

remez computes an approximation of the function f with respect to the weight function w on
the interval range. More precisely, it searches a polynomial p such that |[pw — f|e is (almost
minimal) among all polynomials p of a certain form. The norm is the infinite norm, e.g. ||g|lcc =
max{|g(z)|,x € range}.

If w =1 (the default case), it consists in searching the best polynomial approximation of f with
respect to the absolute error. If f =1 and w is of the form 1/g, it consists in searching the best
polynomial approximation of g with respect to the relative error.

If n is given, the polynomial p is searched among the polynomials with degree not greater than
n. If L is given, the polynomial p is searched as a linear combination of monomials X* where k
belongs to L. L may contain ellipses but cannot be end-elliptic.

The polynomial is obtained by a convergent iteration called Remez’ algorithm. The algorithm
computes a sequence pi,...,Pk,... such that ey = ||prw — f|lo converges towards the optimal
value e. The algorithm is stopped when the relative error between e; and e is less than quality.

Note: the algorithm may not converge in certain cases. Moreover, it may converge towards a
polynomial that is not optimal. These cases correspond to the cases when Haar’s condition is not
fulfilled. See [Cheney - Approximation theory] for details.

Example 1:

>
>
5
>
0

p = remez(exp(x),5,[0;11);
degree(p);

dirtyinfnorm(p-exp(x),[0;1]);
.112956994145777826976474581166951642161746831108566851946e-5

Example 2:

97

>
>
>
0

.999999999943937321805410306927692541203518389031685 + (-0.49999999571556857755
9574413581766900435294037106493613) * x"2 + 0.4166661323347363211356520614037568
56904074913853682927e-1 * x4 + (-0.13886529147145676586432612354047793709150039
0886117905e-2) * x"6 + 0.243726791772232726278486347508569482304048351169722066e
-4 *x x°8

p = remez(1,[10,2,4,6,8|]1,[0,Pi/4],1/cos(x));
canonical=on!;

p;

Example 3:

OV OV OV VvV V.YV

.112956994145777826976474581166951642161746831108566851946e-5

.11295698022747876310115474830183586181755211237038868201e-5

.112956980227478673699869114581631945410176127063383668503e-5

pl = remez(exp(x),5,[0;1],default,le-5);
p2 = remez(exp(x),5,[0;1],default,le-10);
p3 = remez(exp(x),5,[0;1],default,le-15);
dirtyinfnorm(pl-exp(x),[0;1]);

dirtyinfnorm(p2-exp(x),[0;1]);

dirtyinfnorm(p3-exp(x), [0;1]);

See also: dirtyinfnorm (8.32), infnorm (8.68))

8.122 rename

Name: rename
rename the free variable.

Usage:

rename(identl,ident2) : void

Parameters:

identl is the current name of the free variable.

ident2 is a fresh name.

Description:

rename lets one change the name of the free variable. Sollya can handle only one free variable
at a time. The first time in a session that an unbound name is used in a context where it can
be interpreted as a free variable, the name is used to represent the free variable of Sollya. In the
following, this name can be changed using rename.

Be careful: if ident2 has been set before, its value will be lost. Use the command isbound to know
if ident?2 is already used or not.

If identl is not the current name of the free variable, an error occurs.

If rename is used at a time when the name of the free variable has not been defined, ident is
just ignored and the name of the free variable is set to ident2.

Example 1:

>
>

>
>

sin(x)

sin(y)

f=sin(x);
f;

rename(x,y) ;
f;

98

Example 2:

> a=1;

> f=sin(x);

> rename(x,a);
> a;

a

> £

sin(a)

Example 3:

> verbosity=1!;

> f=sin(x);

> rename(y,z);

Warning: the current free variable is named "x" and not "y". Can only rename the
free variable.

The last command will have no effect.

Example 4:

> rename(x,y);
> isbound(x);
false
> isbound(y);
true

See also: isbound (8.71))

8.123 restart
Name: restart
brings Sollya back to its initial state
Usage:
restart : void — void
Description:

e The command restart brings Sollya back to its initial state. All current state is abandoned, all
libraries unbound and all memory freed.

The restart command has no effect when executed inside a Sollya script read into a main Sollya
script using execute. It is executed in a Sollya script included by a #include macro.

Using the restart command in nested elements of imperative programming like for or while loops is
possible. Since in most cases abandoning the current state of Sollya means altering a loop invariant,
warnings of the impossibility of continuing a loop may follow unless the state is rebuilt.

Example 1:

99

> print(exp(x));

exp (x)

> a = 3;

> restart;

The tool has been restarted.

> print(x);

X

> a;

Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor equal to the current free variable.

Will interpret "a" as "x".
X
Example 2:
> print(exp(x));
exp (x)
> for i from 1 to 10 do {
> print(i);
> if (i == 5) then restart;
>}
1
2
3
4
5

The tool has been restarted.
Warning: the tool has been restarted inside a for loop.
The for loop will no longer be executed.

Example 3:

100

> print(exp(x));

exp (x)

> a = 3;

> for i from 1 to 10 do {
> print(i);

> if (i == 5) then {
> restart;

> i=7;

> };

> };

1

2

3

4

5

The tool has been restarted.
8

9

10

> print(x);

X

> aj;

Warning: the identifier "

ion nor equal to the current free variable.
Will interpret "a" as "x".
X

a" is neither assigned to, nor bound to a library funct

See also: quit (8.114]), execute ({8.45))

8.124 return

Name: return
indicates an expression to be returned in a procedure

Usage:
return expression : void
Parameters:
e czpression represents the expression to be returned

Description:

The keyword return allows for returning the (evaluated) expression expression at the end of a
begin-end-block (-block) used as a Sollya procedure body. See proc for further details concerning
Sollya procedure definitions.

Statements for returning expressions using return are only possible at the end of a begin-end-block
used as a Sollya procedure body. Only one return statement can be given per begin-end-block.

If at the end of a procedure definition using proc no return statement is given, a return void
statement is implicitely added. Procedures, i.e. procedure objects, when printed out in Sollya
defined with an implicit return void statement are displayed with this statement explicited.

Example 1:

101

> succ = proc(n) { var res; res :=n + 1; return res; };
> succ(5);

6

> succ;

proc(n)

begin

var res;

res := (n) + (1);

return res;

end

Example 2:

> hey = proc(s) { print("Hello",s); };
> hey("world");

Hello world

> hey;

proc(s)

begin

print ("Hello", s);

return void;

end

See also: proc (8.112)), void (8.153)

8.125 revert

Name: revert
reverts a list.

Usage:
revert(L) : list — list
Parameters:
e [is a list.
Description:
e revert(L) returns the same list, but with its elements in reverse order.
e If L is an end-elliptic list, revert will fail with an error.

Example 1:

> revert([| [1);
Ll 11

Example 2:

> revert([12,3,5,2,1,411);
(14, 1, 2, 5, 3, 2[]

102

8.126 rn

Name: RN
constant representing rounding-to-nearest mode.

Description:

e RN is used in command round to specify that the value must be rounded to the nearest repre-
sentable floating-point number.

Example 1:

> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 27 (1)

See also: RD (8.117)), RU (8.130)), RZ (8.131)), round (8.127))

8.127 round

Name: round
rounds a number to a floating-point format.

Usage:
round(z,n,mode) : (constant, integer, RD | RU | RN | RZ) — constant
Parameters:
e 1 is a constant to be rounded.
e n is the precision of the target format.
e mode is the desired rounding mode.
Description:

e round(z,n,mode) rounds z to a floating-point number with precision n, according to rounding-
mode mode.

e Subnormal numbers are not handled. The range of possible exponents is the range used for all
numbers represented in Sollya (e.g. basically the range used in the library MPFR). Please use the
functions double, doubleextended, doubledouble and tripledouble for roundings to classical
formats with their range of exponents.

Example 1:

> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 27 (1)

Example 2:

display=binary!;
a=2"(-1100);
round(a,53,RN) ;
._2 % 27(-1100)
double(a);

See also: RN (8.126), RD (8.117), RU (8.130)), RZ (8.131]), double (8.36), doubleextended (8.35),
doubledouble (8.37), tripledouble (8.149)), roundcoefficients (8.128)), roundcorrectly (8.129)

103

OV~ V VYV

8.128 roundcoefficients

Name: roundcoefficients
rounds the coefficients of a polynomial to classical formats.

Usage:
roundcoefficients(p,L) : (function, list) — function
Parameters:
e p is a function. Usually a polynomial.
e [is a list of formats.
Description:

e If p is a polynomial and L a list of floating-point formats, roundcoefficients(p,L) rounds each
coeflicient of p to the corresponding format in L.

e If p is not a polynomial, roundcoefficients does not do anything.

e If L contains other elements thanD, double, DD, doubledouble, TD and tripledouble, an
€ITor OCCurs.

e The coefficients in p corresponding to X* is rounded to the format L[i]. If L does not contain enough
elements (e.g. if length(L) < degree(p)+1), a warning is displayed. However, the coefficients cor-
responding to an element of L are rounded. The last coefficients (that do not have a corresponding
element in L) are kept with their own precision. If L contains too much elements, the last useless
elements are ignored. In particular L may be end-elliptic in which case roundcoefficients has the
natural behavior.

Example 1:

> p=exp(1) + x*(exp(2) + x*exp(3));

> display=binary!;

> roundcoefficients(p, [IDD,D,D|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2°(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2°(2) + x * 1.0100000101011110010110111111011011111011000
10000011_2 * 27(4))

> roundcoefficients(p, [IDD,D...[]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 27(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2°(2) + x * 1.0100000101011110010110111111011011111011000
10000011_2 * 27(4))

Example 2:

> f=sin(exp(1)*x);

> display=binary!;

> £

sin(x * 1.0101101111110000101010001011000101000101011101101001010100110101010111
11101110001010110001000000010011100111101001111001111000111011000101110011100010
1100000111101_2 * 27(1))

> roundcoefficients(f,[ID...1]);

sin(x * 1.0101101111110000101010001011000101000101011101101001010100110101010111
11101110001010110001000000010011100111101001111001111000111011000101110011100010
1100000111101_2 * 27(1))

Example 3:

104

p=exp (1) + x*(exp(2) + x*exp(3));

verbosity=1!;

display=binary!;

roundcoefficients(p, [IDD,DI|]);

Warning: the number of the given formats does not correspond to the degree of th
e given polynomial.

Warning: the Oth coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.

Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.

Warning: the 1th coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.

Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.

Warning: rounding may have happened.
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2°(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 27(2) + x * 1.0100000101011110010110111111011011111011000
10000010111110010110101001011110111111100010100110111010001001100001110100011100
10000010110000101100000111001011100101001_2 * 27(4))

vV V V V

See

also: double (8.36)), doubledouble ({8.37), tripledouble (8.149)

8.129 roundcorrectly

Name: roundcorrectly
rounds an approximation range correctly to some precision

Usage:

roundcorrectly(range) : range — constant

Parameters:

e range represents a range in which an exact value lies

Description:

e Let range be a range of values, determined by some approximation process, safely bounding an
unknown value v. The command roundcorrectly(range) determines a precision such that for this
precision, rounding to the nearest any value in range yields to the same result, i.e. to the correct

rounding of v.

If no such precision exists, a warning is displayed and roundcorrectly evaluates to NaN.

Example 1:

> printbinary(roundcorrectly([1.010001_2; 1.0101_2]));
1.01_2 * 27(0)

> printbinary(roundcorrectly([1.00001_2; 1.001_2]));
1..2 x 27(0)

Example 2:

> roundcorrectly([-1; 11);
@NaN@

See

also: round ({8.127)

105

8.130 ru
Name: RU

constant representing rounding-upwards mode.

Description:

e RU is used in command round to specify that the value x must be rounded to the smallest
floating-point number y such that = < y.

Example 1:

> display=binary!;
> round(Pi,20,RU);
1.100100100001111111_2 * 27(1)

See also: RZ (8.131), RD (R.117), RN (8.126), round (8.127)

8.131 rz

Name: RZ
constant representing rounding-to-zero mode.

Description:

e RZ is used in command round to specify that the value must be rounded to the closest floating-
point number towards zero. It just consists in truncate the value to the desired format.

Example 1:

> display=binary!;
> round(Pi,20,RZ);
1.1001001000011111101_2 * 27(1)

See also: RD (8.117), RU (8.130), RN (8.126)), round ([8.127))

8.132 searchgal

Name: searchgal
searches for a preimage of a function such that the rounding the image commits an error smaller than a
constant

Usage:

searchgal(function, start, preimage precision, steps, format, error bound) : (function, constant, integer,
integer, D|double|DD|doubledouble|DE|doubleextended|TD|tripledouble, constant) — list
searchgal(list of functions, start, preimage precision, steps, list of format, list of error bounds) : (list,
constant, integer, integer, list, list) — list

Parameters:
e function represents the function to be considered
e start represents a value around which the search is to be performed
e preimage precision represents the precision (discretisation) for the eligible preimage values

e steps represents the log2 of the number of search steps to be performed

format represents the format the image of the function is to be rounded to

106

error bound represents a upper bound on the relative rounding error when rounding the image

list of functions represents the functions to be considered

list of formats represents the respective formats the images of the functions are to be rounded to

list of error bounds represents a upper bound on the relative rounding error when rounding the
image

Description:

e The command searchgal searches for a preimage z of a function function or a list of functions list
of functions such that z is a floating-point number with preimage precision significant mantissa
bits and the image y of the function, respectively each image y; of the functions, rounds to format
format respectively to the corresponding format in list of format with a relative rounding error less
than error bound respectively the corresponding value in list of error bounds. During this search,
at most 2 raised to steps attempts are made. The search starts with a preimage value equal to
start. This value is then increased and decreased by 1 ulp in precision preimage precision until a
value is found or the step limit is reached.

If the search finds an appropriate preimage z, searchgal evaluates to a list containing this value.
Otherwise, searchgal evaluates to an empty list.

Example 1:

> searchgal (log(x),2,53,15,DD,1b-112);

Ll 1]

> searchgal(log(x),2,53,18,DD,1b-112);
[10.20000000000384972054234822280704975128173828125e1|]

Example 2:

> f = exp(x);

> s = searchgal(f,2,53,18,DD,1b-112);

> if (s '= [I1]) then {

> v = s[0];

> print("The rounding error is 27 (",evaluate(log2(abs(DD(f)/f - 1)),v),")");
> } else print("No value found");

The rounding error is 27 (-0.112106878438809380148206984258358542322113874177832
146e3)

Example 3:

> searchgal ([|sin(x),cos(x)],1,53,15,[ID,D|], [|1b-62,1b-6011);
[10.10000000000015949463971764998859725892543792724609375e1 |]

See also: round (8.127)), double ({8.36), doubledouble (8.37), tripledouble (8.149), evaluate (8.44]),
worstcase (|8.154))

8.133 simplify

Name: simplify
simplifies an expression representing a function

Usage:
simplify (function) : function — function
Parameters:

e function represents the expression to be simplified

107

Description:

The command simplify simplifies constant subexpressions of the expression given in argument
representing the function function. Those constant subexpressions are evaluated in using floating-

point arithmetic with the global precision prec.

Example 1:

> print(simplify(sin(pi * x)));
sin(0.31415926535897932384626433832795028841971693993750801el * x)
> print(simplify(erf(exp(3) + x * log(4))));

111989061883446424291635313615100026872049663e1)

erf (0.200855369231876677409285296545817178969879078385543785e2 + x * 0.138629436

Example 2:
> prec = 20!;
>t = erf(0.5);
> s = simplify(erf(0.5));
> prec = 200!;
>t
0.520499877813046537682746653891964528736451575757963700056880583
> s;
0.52050018310546875

See also: simplifysafe (8.134), autosimplify (8.13), prec (8.104), evaluate ({8.44))

8.134 simplifysafe
Name: simplifysafe
simplifies an expression representing a function
Usage:
simplifysafe(function) : function — function
Parameters:
e function represents the expression to be simplified

Description:

e The command simplifysafe simplifies the expression given in argument representing the function

function. The command simplifysafe does not endanger the safety of computations even in Sollya’s
floating-point environment: the function returned is mathematically equal to the function function.

Remark that the simplification provided by simplifysafe is not perfect: they may exist simpler

equivalent expressions for expressions returned by simplifysafe.

Example 1:

> print(simplifysafe((6 + 2) + (5 + exp(0)) * x));
8 +6 * x

Example 2:

> print(simplifysafe((log(x - x + 1) + asin(1))));
(pi) / 2

Example 3:

> print(simplifysafe((log(x - x + 1) + asin(1)) - (atan(1l) * 2)));
(pi) / 2 - (pi) / 4 * 2

See also: simplify (8.133), autosimplify (8.13])

108

8.135 sin
Name: sin

the sine function.

Description:
e sin is the usual sine function.

e It is defined for every real number x.

See also: asin (8.9)), cos (8.23), tan (8.144)

8.136 sinh

Name: sinh
the hyperbolic sine function.

Description:

ef—e ”

e sinh is the usual hyperbolic sine function: sinh(z) = =

e It is defined for every real number x.

See also: asinh (8.10)), cosh (8.24)), tanh (|8.145|)

8.137 sort

Name: sort
sorts a list of real numbers.
Usage:
sort(L) : list — list
Parameters:
o [is a list.
Description:
e If L contains only constant values, sort(L) returns the same list, but sorted increasingly.
e If L contains at least one element that is not a constant, the command fails with a type error.
e If L is an end-elliptic list, sort will fail with an error.

Example 1:

> sort ([11);

Ll 11

> sort([12,3,5,2,1,41]1);
[11, 2, 2, 3, 4, 5]]

8.138 sqrt

Name: sqrt
square root.

Description:

e sqrt is the square root, e.g. the inverse of the function square: ,/y is the unique positive = such
that 22 = y.

e It is defined only for z in [0; +o0].

109

8.139 string
Name: string
keyword representing a string type
Usage:
string : type type
Description:

e string represents the string type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like string cannot be handled outside
the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc , boolean , constant , function , integer , list
of , range
8.140 subpoly
Name: subpoly
restricts the monomial basis of a polynomial to a list of monomials
Usage:
subpoly (polynomial, list) : (function, list) — function

Parameters:

e polynomial represents the polynomial the coefficients are taken from

e [ist represents the list of monomials to be taken
Description:

e subpoly extracts the coefficients of a polynomial polynomial and builds up a new polynomial out
of those coefficients associated to monomial degrees figuring in the list list.
If polynomial represents a function that is not a polynomial, subpoly returns 0.

If list is a list that is end-elliptic, let be j the last value explicitely specified in the list. All coefficients
of the polynomial associated to monomials greater or equal to j are taken.

Example 1:
> p = taylor(exp(x),5,0);
> s = subpoly(p,[l11,3,511);
> print(p);
1+x* (1+x*(0.5+xx*x (1/6+xx*x (1 /24+x/120))))
> print(s);

x*x (1 +x2*x {1/ 6+x"2/ 120))

Example 2:

> p = remez(atan(x),10,[-1,1]);

> subpoly(p,[11,3,5...11);

x * (0.999866329465927392192206568432088436991654470572188 + x~2 * ((-0.33030478
5504971132950658277728545438994810895546443) + x~2 * (0.180159294636895327241868
940582645835027165398881204 + x * (0.1840057398365945276008968578152174643401100
63213703e-46 + x * ((-0.851563508341582145150897325769046842604973435036432¢-1)
+ x * ((-0.204304173639774340598827812338387968056700475880779e-46) + x * (0.208
451141756196733464162256100630144371647287176463e-1 + x * 0.78834169080702929204
8116493729741056214183302078353e-47)))))))

110

Example 3:

> subpoly(exp(x),[11,2,31]1);
0

See also: roundcoefficients (8.128)), taylor (8.146)), remez (8.121))

8.141 substitute

Name: substitute
replace the occurences of the free variable in an expression.

Usage:

substitute(f,g) : (function, function) — function
substitute(f,t) : (function, constant) — constant

Parameters:
e f is a function.
e g is a function.
e { is a real number.
Description:
e substitute(f, g) produces the function (f o g): z — f(g(z)).

e substitute(f, ¢) is the constant f(t). Note that the constant is represented by its expression until
it has been evaluated (exactly the same way as if you type the expression f replacing instances of
the free variable by t).

e If f is stored in a variable F. It is absolutely equivalent to writing F(g) or F(t).

Example 1:

> f=sin(x);

> g=cos(x);

> substitute(f,g);
sin(cos(x))

> £(g);
sin(cos(x))

Example 2:

a=1;

f=sin(x);

substitute(f,a);
.841470984807896506652502321630298999622563060798373

f(a);
.841470984807896506652502321630298999622563060798373

O VvV OV VvV YV

8.142 sup

Name: sup
gives the upper bound of an interval.

Usage:

111

sup(]) : range — constant
sup(z) : constant — constant

Parameters:

e [is an interval.

e 1 is a real number.
Description:

e Returns the upper bound of the interval I. Each bound of an interval has its own precision, so this
command is exact, even if the current precision is too small to represent the bound.

e When called on a real number z, sup considers it as an interval formed of a single point: [x, x]. In
other words, sup behaves like the identity.

Example 1:

> sup([1;3]);
3

> sup(5);

5

Example 2:

display=binary!;

I=[0; 0.111110000011111_2];
sup(I);

.11110000011111_2 * 27(-1)
prec=12!;

sup(I);

.11110000011111_2 * 27(-1)

See also: inf (8.67)), mid (8.83)

8.143 tail

Name: tail
gives the tail of a list.

= VvV V = V V V

Usage:
tail(L) : list — any type
Parameters:
o L is a list.
Description:
e tail(L) returns the list L without its first element.
e If L is empty, the command will fail with an error.

e tail can also be used with end-elliptic lists. In this case, the result of tail is also an end-elliptic
list.

Example 1:

> tail([11,2,311);
[12, 311
> tail([l1,2...11);
[12...11

See also: head (8.61))

112

8.144 tan

Name: tan
the tangent function.

Description:
e tan is the tangent function, defined by tan(x) = sin(x)/ cos(z).

e It is defined for every real number x that is not of the form nm 4 7/2 where n is an integer.

See also: atan (8.11)), cos , sin (8.135)

8.145 tanh

Name: tanh
the hyperbolic tangent function.

Description:
e tanh is the hyperbolic tangent function, defined by tanh(x) = sinh(z)/ cosh(z).

e It is defined for every real number x.

See also: atanh (8.12)), cosh ({8.24)), sinh (|8.136]

8.146 taylor

Name: taylor
computes a Taylor expansion of a function in a point

Usage:
taylor(function, degree, point) : (function, integer, constant) — function
Parameters:
e function represents the function to be expanded
e degree represents the degree of the expansion to be delivered
e point represents the point in which the function is to be developped
Description:

e The command taylor returns an expression that is a Taylor expansion of function function in point
point having the degree degree.

Let f be the function function, t be the point point and n be the degree degree. Then, tay-
lor(function,degree,point) evaluates to an expression mathematically equal to

nof@)
Z f '(t) (1_ _ t)7
i=0 ’

]

Remark that taylor evaluates to 0 if the degree degree is negative.

Example 1:

> print(taylor(exp(x),5,0));
1+x* (1 +x*x (0.5+x*x (1 /6+xx*x (1/24+x/ 120))))

Example 2:

113

> print(taylor(asin(x),7,0));
x*x (L +x"2% (1 /6+x"2x* (9 / 120 + x°2 * 225 / 5040)))

Example 3:

> print(taylor(erf(x),6,0));
x * (1 / sqre((pi) / 4) + x72 x ((sqrt((pi) / 4) * 4 / (pi) * (-2)) / 6 + x72 *
(sqrt((pi) / 4) * 4 / (pi) * 12) / 120))

See also: remez (8.121])

8.147 taylorrecursions

Name: taylorrecursions
controls the number of recursion steps when applying Taylor’s rule.

Description:

e taylorrecursions is a global variable. Its value represents the number of steps of recursion that
are used when applying Taylor’s rule. This rule is applied by the interval evaluator present in the
core of Sollya (and particularly visible in commands like infnorm).

e To improve the quality of an interval evaluation of a function f, in particular when there are
problems of decorrelation), the evaluator of Sollya uses Taylor’s rule: f([a,b]) C f(m)+[a—m, b—
m] - f'([a, b]) where m = “;b. This rule can be applied recursively. The number of step in this
recursion process is controlled by taylorrecursions.

e Setting taylorrecursions to 0 makes Sollya use this rule only one time; setting it to 1 makes
Sollya use the rule two times, and so on. In particular: the rule is always applied at least once.

Example 1:

> f=exp(x);

> p=remez(f,3,[0;11);

> taylorrecursions=0;

The number of recursions for Taylor evaluation has been set to O.

> evaluate(f-p, [0;1]);
[-0.468393649043687401639739552931015355858675716815424;0.4694778180126977487653
76148435266259461851121717393]

> taylorrecursions=1;

The number of recursions for Taylor evaluation has been set to 1.

> evaluate(f-p, [0;1]);
[-0.1381311146820601697664636215120156307211349976570287;0.1392152836510705168921
00217016266210814525381472255]

8.148 timing

Name: timing
global variable controlling timing measures in Sollya.

Description:

e timing is a global variable. When its value is on, the time spent in each command is measured
and displayed (for verbosity levels higher than 1).

Example 1:

114

> verbosity=1!;

> timing=on;

Timing has been activated.

> p=remez(sin(x),10,[-1;1]);

Information: Remez: computing the matrix spent 2 ms

Information: Remez: computing the quality of approximation spent 12 ms
Information: computing a minimax approximation spent 46 ms
Information: assignment spent 47 ms

Information: full execution of the last parse chunk spent 47 ms

See also: on (8.92), off (8.91))

8.149 tripledouble

Names: tripledouble, TD
represents a number as the sum of three IEEE doubles.

Description:
e tripledouble is both a function and a constant.

e As a function, it rounds its argument to the nearest number that can be written as the sum of
three double precision numbers.

e The algorithm used to compute tripledouble(x) is the following: let xh = double(x) and let
xl = doubledouble(x-xh). Return the number xh+xl. Note that if the current precision is not
sufficient to represent exactly xh+xl, a rounding will occur and the result of tripledouble(x) will
be useless.

e As a constant, it symbolizes the triple-double precision format. It is used in contexts when a
precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See
the corresponding help pages for examples.

Example 1:
> verbosity=1!;
> a = 1+ 27(-55)+27(-115);
> TD(a);
0.100000000000000002775557561562891353466491600711095598e1
> prec=110!;
> TD(a);
Warning: double rounding occurred on invoking the triple-double rounding operato
r.
Try to increase the working precision.
0.10000000000000000277555756156289135106e1

See also: double (8.36), doubleextended (8.38), doubledouble (8.37)), roundcoefficients (8.128]),
implementpoly (8.66))

8.150 true

Name: true
the boolean value representing the truth.

Description:
e true is the usual boolean value.

Example 1:

115

> true && false;
false

> 2>1;

true

See also: false (8.52), && (8.6), || (8-93)

8.151 wvar

Name: var
declaration of a local variable in a scope

Usage:
var identifierl, identifier2,... , identifiern : void
Parameters:
e identifierl, identifier2,... , identifiern represent variable identifiers
Description:

e The keyword var allows for the declaration of local variables identifier! through identifiern in a
begin-end-block ({}-block). Once declared as a local variable, an identifier will shadow identifiers
declared in higher scopes and undeclared identifiers available at top-level.

Variable declarations using var are only possible in the beginning of a begin-end-block. Several
var statements can be given. Once another statement is given in a begin-end-block, no more var
statements can be given.

Variables declared by var statements are dereferenced as error until they are assigned a value.

Example 1:

> exp(x);

exp (x)

> a = 3;

> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1

true

5

3

> a;

3

See also: error (8.43))

8.152 verbosity

Name: verbosity
global variable controlling the quantity of information displayed by commands.

Description:

e verbosity accepts any integer value. At level 0, commands do not display anything on standard
out. Note that very critical information may however be displayed on standard err.

e Default level is 1. It displays important informations such as warnings when roundings happen.

e For higher levels more informations are displayed depending on the command.

116

Example 1:

> verbosity=0!;

> 1.2+"toto";

error

> verbosity=1!;

> 1.2+"toto";

Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.

If safe computation is needed, try to increase the precision.

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.

error

> verbosity=2!;

> 1.2+"toto";

Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.

If safe computation is needed, try to increase the precision.

Warning: at least one of the given expressions or a subexpression is not correct
ly typed

or its evaluation has failed because of some error on a side-effect.
Information: the expression or a partial evaluation of it has been the following

(0.11999%¢e1) + ("toto")
error

8.153 wvoid

Name: void
the functional result of a side-effect or empty argument resp. the correponding type

Usage:
void : void | type type
Description:

e The variable void represents the functional result of a side-effect or an empty argument. It is used
only in combination with the applications of procedures or identifiers bound through externalproc
to external procedures.

The void result produced by a procedure or an external procedure is not printed at the prompt.
However, it is possible to print it out in a print statement or in complex data types such as lists.

The void argument is implicit when giving not argument to a procedure or an external procedure
when applied. It can be explicited nevertheless. For example, suppose that foo is a procedure or
an external procedure with a void argument. Then foo() and foo(void) are correct calls to foo.

e void is used also as a type identifier for externalproc. Typically, an external procedure taking
void as an argument or returning void is bound with a signature void — > some type or some
type — > void. See externalproc for more details.

Example 1:

> print(void);
void
> void;

Example 2:

117

> hey = proc() { print("Hello world."); };
> hey;

procQ)

begin

print("Hello world.");
return void;

end

> hey();

Hello world.

> hey(void);

Hello world.

> print(hey());

Hello world.

void

Example 3:

> bashexecute("gcc -fPIC -Wall -c externalprocvoidexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocvoidexample externalprocvoidexam
ple.o");

> externalproc(foo, "./externalprocvoidexample", void -> void);
> foo;

foo(void) -> void

> foo();

Hello from the external world.

> foo(void);

Hello from the external world.

> print(foo());

Hello from the external world.

void

See also: error (8.43)), proc (8.112)), externalproc (8.51))

8.154 worstcase

Name: worstcase
searches for hard-to-round

Usage:

worstcase(function, preimage precision, preimage exponent range, image precision, error bound) :
(function, integer, range, integer, constant) — void
worstcase(function, preimage precision, preimage exponent range, image precision, error bound,
filename) : (function, integer, range, integer, constant, string) — void

Parameters:
e function represents the function to be considered
e preimage precision represents the precision of the preimages
e preimage exponent range represents the exponents in the preimage format
e image precision represents the precision of the format the images are to be rounded to
e error bound represents the upper bound for the search w.r.t. the relative rounding error
e filename represents a character sequence containing a filename

Description:

118

e The worstcase command is deprecated. It searches hard-to-round cases of a function. The com-
mand searchgal has a comparable functionality.

Example 1:

> worstcase(exp(x),24,[1,2],24,1b-26);

prec = 165

x = 0.199999988e1 f(x) = 0.738905525e1 eps = 0.4599860142344669559
61846954937641201380019549790372e-8 = 27 (-27.695763)

x =2 f(x) = 0.738905621e1l eps = 0.1445636087496730181222283793955

33417878125150587072e-7 = 2~ (-26.043720)

See also: round (8.127)), searchgal (8.132)), evaluate (8.44))

8.155 write

Name: write
prints an expression without separators

Usage:
write(expri,...,exprn) : (any type,..., any type) — void
write(ezpri,...,exprn) > filename : (any type,..., any type, string) — void
write(ezpri,...,exprn) >> filename : (any type,...,any type, string) — void
Parameters:

e expr represents an expression
e filename represents a character sequence indicating a file name
Description:

e write(exprl,...,exprn) prints the expressions expr! through exprn. The character sequences cor-
responding to the expressions are concatenated without any separator. No newline is displayed at
the end. In contrast to print, write expects the user to give all separators and newlines explicitely.

”

If a second argument filename is given after a single ”>”, the displaying is not output on the
standard output of Sollya but if in the file filename that get newly created or overwritten. If a
double ”>>" is given, the output will be appended to the file filename.

The global variables display, midpointmode and fullparentheses have some influence on the
formatting of the output (see display, midpointmode and fullparentheses).

Remark that if one of the expressions expri given in argument is of type string, the character
sequence ezrpri evaluates to is displayed. However, if ezpri is of type list and this list contains
a variable of type string, the expression for the list is displayed, i.e. all character sequences get
displayed surrounded by quotes ("”’). Nevertheless, escape sequences used upon defining character
sequences are interpreted immediately.

Example 1:

> write(x + 2 + exp(sin(x)));

> write("Hello\n");

X + 2 + exp(sin(x))Hello

> write("Hello","world\n");

Helloworld

> write("Hello","you", 4 + 3, "other persons.\n");
Helloyou7other persons.

Example 2:

119

> write("Hello","\n");

Hello

> write([|"Hello"|],"\n");
[I"Hello"|]

> s = "Hello";

> write(s, [Isl],"\n");
Hello[|"Hello"|]

> t = "Hello\tyou";

> write(t, [Itl],"\n");

Hello you[|"Hello you"|]

Example 3:

> write(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.so0l");
x + 2 + exp(sin(x))

Example 4:

> write(x + 2 + exp(sin(x))) >> "foo.sol";

See also: print (8.107)), printexpansion (8.108), printhexa (8.110), printfloat (8.109), printxml
(8.111)), readfile (8.118), autosimplify (8.13)), display (8.34), midpointmode (8.84)), fullparenthe-
ses ({8.50)), evaluate (8.44)

120

9 Grammar of the Sollya language

statement
program statement

program

—

statement — command ;
command — simplecommand

| { commandlist }

| { variabledeclarationlist commandlist }
| { variabledeclarationlist }

I {}

| if ifcommand

| while thing do command

| for forcommand

ifcommand — thing then command
| thing then command else command

forcommand — identifier from thing to thing do command
| identifier from thing to thing by thing do command

| identifier in thing do command

commandlist — command ;
| command ; commandlist

variabledeclarationlist — variabledeclaration ;
| variabledeclaration ; variabledeclarationlist

variabledeclaration — var identifierlist

identifier
identifier , identifierlist

identifierlist

—

procbody commandlist }
variabledeclarationlist commandlist }

{
{
{ variabledeclarationlist }
{
{
{

commandlist return thing ; }
variabledeclarationlist commandlist return thing ; }
{ variabledeclarationlist return thing ; }
() { return thing ; }
(identifierlist) { commandlist }
(identifierlist) { variabledeclarationlist commandlist }
(identifierlist) { variabledeclarationlist }
(identifierlist) { }
(identifierlist) { commandlist return thing ; }
(identifierlist) { variabledeclarationlist commandlist return thing ; }
(identifierlist) { variabledeclarationlist return thing ; }
(identifierlist) { return thing ; }

(
(
(
(
(
(
(

P A W S g g

121

simplecommand — quit

| restart

| mnop

| print (thinglist)

| print (thinglist) > thing

| print (thinglist) > > thing

| plot (thing , thinglist)

| printhexa (thing)

| printfloat (thing)

| printbinary (thing)

| printexpansion (thing)

| bashexecute (thing)

| externalplot (thing , thing , thing , thing , thinglist)

| write (thinglist)

| write (thinglist) > thing

| write (thinglist) > > thing

| asciiplot (thing , thing)

| printxml (thing)

| execute (thing)

| printxml (thing) > thing

| printxml (thing) > > thing

| worstcase (thing , thing , thing , thing , thinglist)

| rename (identifier , identifier)

| externalproc (identifier , thing , externalproctypelist - >
extendedexternalproctype)

| assignment

| thinglist

| procedure identifier prochbody

assignment — stateassignment
| stillstateassignment !
| simpleassignment
| simpleassignment !
simpleassignment identifier = thing

identifier := thing

identifier = library (thing)
indexing = thing

indexing := thing

—

stateassignment — prec = thing

| points = thing

| diam = thing

| display = thing

| verbosity = thing

| canonical = thing

| autosimplify = thing

| taylorrecursions = thing
| timing = thing

| fullparentheses = thing

| midpointmode = thing

| hopitalrecursions = thing

122

stillstateassignment — prec = thing

| points = thing

| diam = thing

| display = thing

| verbosity = thing

| canonical = thing

| autosimplify = thing

| taylorrecursions = thing

| timing = thing

| fullparentheses = thing

| midpointmode = thing

| hopitalrecursions = thing
thinglist — thing

| thing , thinglist

thing && megaterm

thing — megaterm
|
| thing || megaterm
|

! megaterm

indexing — basicthing [thing]
megaterm — hyperterm

| megaterm == hyperterm

| megaterm < hyperterm

| megaterm > hyperterm

\ megaterm < = hyperterm

| megaterm > = hyperterm

\ megaterm != hyperterm
hyperterm — term

| hyperterm + term

| hyperterm - term

| hyperterm @ term

| hyperterm :: term

| hyperterm .: term

| hyperterm :. term
term — subterm

| - subterm

| term * subterm

| term / subterm

subterm — basicthing
| subterm " basicthing

123

basicthing

constant

list

on

off

dyadic

powers

binary
hexadecimal
file

postscript
postscriptfile
perturb

RD

RU

RZ

RN
honorcoeffprec
true

void

false

default
decimal
absolute
relative

error

double
doubleextended
doubledouble
tripledouble
string

constant
identifier
isbound (identifier)
identifier (thinglist)
identifier ()

list

range

debound
headfunction

(thing)
statedereference
indexing

(thing) (thinglist)
proc procbody

constant
dyadicconstant
hexconstant
hexadecimalconstant
binaryconstant

pi

simplelist |]
simplelist ... |]

[
[I1]
[
[

124

simplelist — thing
| thing , simplelist
thing , ... , simplelist

range — [thing , thing]
| [thing ; thing]

*< thing >.

*< thing >_

debound — *< thing >*
|
|
| sup (thing)
| mid (thing)
| inf (thing)

headfunction — diff (thing)

| simplify (thing)

| remez (thing , thing , thinglist)

| horner (thing)

| canonical (thing)

| expand (thing)

| simplifysafe (thing)

| taylor (thing , thing , thing)

| degree (thing)

| numerator (thing)

| denominator (thing)

| substitute (thing , thing)

| coeff (thing , thing)

| subpoly (thing , thing)

| roundcoefficients (thing , thing)

| rationalapprox (thing , thing)

| accurateinfnorm (thing , thing , thinglist)

| roundtoformat (thing , thing , thing)

| evaluate (thing , thing)

| parse (thing)

| readxml (thing)

| infnorm (thing , thinglist)

| findzeros (thing , thing)

| fpfindzeros (thing , thing)

| dirtyinfnorm (thing , thing)

| integral (thing , thing)

| dirtyintegral (thing , thing)

| implementpoly (thing , thing , thing , thing , thing , thinglist)

| checkinfnorm (thing , thing , thing)

| zerodenominators (thing , thing)

| isevaluable (thing , thing)

| searchgal (thinglist)

| guessdegree (thing , thing , thinglist)

| dirtyfindzeros (thing , thing)

| head (thing)

| roundcorrectly (thing)

| readfile (thing)

| revert (thing)

| sort (thing)

| mantissa (thing)

| exponent (thing)

125

statedereference

precision (thing)
tail (thing)

sqrt (thing)

exp (thing)

log (thing)

log2 (thing)
log10 (thing)

sin (thing)

cos (thing)

tan (thing)

asin (thing)

acos (thing)
atan (thing)
sinh (thing)
cosh (thing)
tanh (thing)
asinh (thing)
acosh (thing)
atanh (thing)
abs (thing)

erf (thing)

erfc (thing)
loglp (thing)
expml (thing)
double (thing)
doubledouble (thing)
tripledouble (thing)
doubleextended (thing)
ceil (thing)

floor (thing)
length (thing)

prec =7
points = 7
diam = 7
display = 7

verbosity = 7
canonical = 7
autosimplify = 7
taylorrecursions = 7
timing = 7
fullparentheses = 7
midpointmode = 7
hopitalrecursions = 7

126

externalproctype — constant
| function
| range
| integer
| string
| boolean
| list of constant
| list of function
| list of range
| list of integer
| list of string
| list of boolean
extendedexternalproctype — void
| externalproctype

externalproctypesimplelist — externalproctype
| externalproctype , externalproctypesimplelist

externalproctypelist — extendedexternalproctype
| (externalproctypesimplelist)

127

	Compilation and installation of the Sollya tool
	Introduction
	General principles
	Variables
	Data types
	Booleans
	Numbers
	Intervals
	Functions
	Strings
	Particular values
	Lists

	Iterative language elements: assignments, conditional statements and loops
	Blocks
	Assignments
	Conditional statements
	Loops

	Functional language elements: procedures
	Commands and functions
	abs
	absolute
	accurateinfnorm
	acos
	acosh
	and
	append
	asciiplot
	asin
	asinh
	atan
	atanh
	autosimplify
	bashexecute
	binary
	boolean
	canonical
	ceil
	checkinfnorm
	coeff
	concat
	constant
	cos
	cosh
	decimal
	default
	degree
	denominator
	diam
	diff
	dirtyfindzeros
	dirtyinfnorm
	dirtyintegral
	display
	divide
	double
	doubledouble
	doubleextended
	dyadic
	equal
	erf
	erfc
	error
	evaluate
	execute
	exp
	expand
	expm1
	exponent
	externalplot
	externalproc
	false
	file
	findzeros
	floor
	fullparentheses
	function
	ge
	gt
	guessdegree
	head
	hexadecimal
	honorcoeffprec
	hopitalrecursions
	horner
	implementpoly
	inf
	infnorm
	integer
	integral
	isbound
	isevaluable
	le
	length
	library
	listof
	log
	log10
	log1p
	log2
	lt
	mantissa
	mid
	midpointmode
	minus
	mult
	neq
	nop
	not
	numerator
	off
	on
	or
	parse
	perturb
	pi
	plot
	plus
	points
	postscript
	postscriptfile
	power
	powers
	prec
	precision
	prepend
	print
	printexpansion
	printfloat
	printhexa
	printxml
	proc
	procedure
	quit
	range
	rationalapprox
	rd
	readfile
	readxml
	relative
	remez
	rename
	restart
	return
	revert
	rn
	round
	roundcoefficients
	roundcorrectly
	ru
	rz
	searchgal
	simplify
	simplifysafe
	sin
	sinh
	sort
	sqrt
	string
	subpoly
	substitute
	sup
	tail
	tan
	tanh
	taylor
	taylorrecursions
	timing
	tripledouble
	true
	var
	verbosity
	void
	worstcase
	write

	Grammar of the Sollya language

